|
Ames B N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology, 8, 15-118.
Araguirang G E, Richter A S. 2022. Activation of anthocyanin biosynthesis in high light—what is the initial signal? New Phytologist, 236, 2037-2043.
Broucke E, Dang T T V, Li Y, Hulsmans S, Van Leene J, De Jaeger G, Hwang I, Wim V D E, Rolland F. 2023. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. The Plant Journal, 115, 1193-1213.
Conn S, Gilliham M. 2010. Comparative physiology of elemental distributions in plants. Annals of Botany, 105, 1081-1102.
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang T E, Wittwer C, Jessen H J, Zhang H, An G Y, Chao D Y, Liu D, Lei M. 2019. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Molecular Plant, 12, 1463-1473.
Guo M, Ruan W, Li R, Xu L, Hani S, Zhang Q, David P, Ren J, Zheng B, Nussaume L, Yi K. 2024. Visualizing plant intracellular inorganic orthophosphate distribution. Nature Plants, 10, 315-326.
Hammond J P, White P J. 2011. Sugar signaling in root responses to low phosphorus availability. Plant Physiology, 156, 1033-1040.
Hatier J H B, Gould K S. 2008. Anthocyanin function in vegetative organs. In: Anthocyanins: Biosynthesis, Functions, and Applications. Springer, New York, NY. pp. 1-19.
He Y, Zhang X, Li L, Sun Z, Li J, Chen X, Hong G. 2021. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytologist, 230, 205-217.
Jezek M, Allan A C, Jones J J, Geilfus C M. 2023. Why do plants blush when they are hungry? New Phytologist, 239, 494-505.
Jiang N, Gutierrez-Diaz A, Mukundi E, Lee Y S, Meyers B C, Otegui M S, Grotewold E. 2020. Synergy between the anthocyanin and RDR6/SGS3/DCL4 siRNA pathways expose hidden features of Arabidopsis carbon metabolism. Nature Communications, 11, 2456.
Jung J Y, Ried M K, Hothorn M, Poirier Y. 2018. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Current Opinion in Biotechnology, 49, 156-162.
Kitashova A, Adler S O, Richter A S, Eberlein S, Dziubek D, Klipp E, Nagele T. 2023. Limitation of sucrose biosynthesis shapes carbon partitioning during plant cold acclimation. Plant, Cell & Environment, 46, 464-478.
Kou M, Liu Y J, Li Z Y, Zhang Y G, Tang W, Yan H, Wang X, Chen X G, Su Z X, Arisha M H. 2019. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiology and Biochemistry, 135, 395-403.
Landhausser S M, Chow P S, Dickman L T, Furze M E, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H, Hoch G, McDowell N G, Richardson A D, Richter A, Adams H D. 2018. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 38, 1764-1778.
Landi M, Tattini M, Gould K S. 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119, 4-17.
Li D, Wang P, Luo Y, Zhao M, Chen F. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57, 1729-1741.
Li H, He K, Zhang Z, Hu Y. 2023. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. Plant Physiology and Biochemistry, 196, 121-129.
Li Y, Fang X, Lin Z. 2022. Convergent loss of anthocyanin pigments is controlled by the same MYB gene in cereals. Journal of Experimental Botany, 73, 6089-6102.
Liu X J, An X H, Liu X, Hu D G, Wang X F, You C X, Hao Y J. 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany, 68, 2977-2990.
Liu Z, Wu X, Wang E, Liu Y, Wang Y, Zheng Q, Han Y, Chen Z, Zhang Y. 2022. PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis. Planta, 256, 42.
Luo M, Lu B, Shi Y, Zhao Y, Wei Z, Zhang C, Wang Y, Liu H, Shi Y, Yang J, Song W, Lu X, Fan Y, Xu L, Wang R, Zhao J. 2022. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles. Theoretical and Applied Genetics, 135, 3039-3055.
Martinelli T. 2008. In situ localization of glucose and sucrose in dehydrating leaves of Sporobolus stapfianus. Journal of Plant Physiology, 165, 580-587.
Naing A H, Kim C K. 2021. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 172, 1711-1723.
Nilsson L, Muller R, Nielsen T H. 2007. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell & Environment, 30, 1499-1512.
Niu M, Chen X, Guo Y, Song J, Cui J, Wang L, Su N. 2023. Sugar signals and R2R3-MYBs participate in potassium-repressed anthocyanin accumulation in radish. Plant and Cell Physiology, 64, 1601-1616.
Paz-Ares J, Puga M I, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrion C, Minambres M, Leyva A. 2021. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Molecular Plant, 15, 104-124.
Pei L, Liu J, Zhou Y, Jiang Y, Li H. 2021. Transcriptomic and metabolomic profiling reveals the protective role of anthocyanins in alleviating low phosphate stress in maize. Physiology and Molecular Biology of Plants, 27, 889-905.
Petroni K, Pilu R, Tonelli C. 2014. Anthocyanins in corn: A wealth of genes for human health. Planta, 240, 901-911.
Pucker B, Selmar D. 2022. Biochemistry and molecular basis of intracellular flavonoid transport in plants. Plants, 11, 963.
Slewinski T L, Meeley R, Braun D M. 2009. Sucrose transporter1 functions in phloem loading in maize leaves. Journal of Experimental Botany, 60, 881-892.
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140, 637-646.
Su N, Wu Q, Cui J. 2016. Increased sucrose in the hypocotyls of radish sprouts contributes to nitrogen deficiency-induced anthocyanin accumulation. Frontiers in Plant Science, 7, 1976.
Tao H, Gao F, Li L, He Y, Zhang X, Wang M, Wei J, Zhao Y, Zhang C, Wang Q, Hong G. 2024. WRKY33 negatively regulates anthocyanins biosynthesis and cooperates with PHR1 to mediate the acclimation to phosphate starvation. Plant Communications, 5, 100821.
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology, 139, 1840-1852.
Xiao Z D, Chen Z Y, Lin Y H, Liang X G, Wang X, Huang S B, Munz S, Graeff-Hönninger S, Shen S, Zhou S L. 2024. Phosphorus deficiency promotes root: Shoot: Ratio and carbon accumulation via modulating sucrose utilization in maize. Journal of Plant Physiology, 303, 154349.
Yousuf B, Gul K, Wani A A, Singh P. 2016. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition, 56, 2223-2230.
Zhou H, He J, Zhang Y, Zhao H, Sun X, Chen X, Liu X, Zheng Y, Lin H. 2024. RHA2b-mediated MYB30 degradation facilitates MYB75-regulated, sucrose-induced anthocyanin biosynthesis in Arabidopsis seedlings. Plant Communications, 5, 100744.
|