Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Rapid and Visual On-Site Detection System for Epizootic Hemorrhagic Disease Virus Based on a Combination of CRISPR-Cas12a and RT-ERA

Dong Zhou1, 2, 3*, Junyong Guan1*, Haibo Yu1, 2, 3, Yuntong Shao1, 2, 3, Changyou Xia1, 2, 3, Caixia Gao1, 2, 3#, Yinglin Qi1, 2, 3#

1 State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

2 Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin 150069, China

3 National Poultry Laboratory Animal Resource Center, Harbin 150069, China

 Highlights: 

1. First development of a RT-ERA/CRISPR-Cas12a platform for rapid and visual detection of EHDV, enabling on-site diagnosis within 1 hour without specialized equipment.

2. High sensitivity and broad serotype coverage: The assay detects as low as 1.7 × 101 copies reaction-1 and recognizes 8 EHDV serotypes (1, 2, 4–8, and 10), overcoming the limitation of serotype-specific antisera required in traditional methods.

3. Integration with HUDSON sample processing allows direct detection from crude samples without RNA extraction, making it suitable for field use in resource-limited settings and supporting point-of-care testing in ruminant populations. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目的: 流行性出血病(Epizootic Hemorrhagic Disease, EHD)是一种由流行性出血病病毒(EHDV)引起、经库蠓传播的虫媒传染病,感染野生及家养反刍动物,被世界动物卫生组织(WOAH)列为须通报动物疫病。近年来我国监测显示多个EHDV血清型在南方省份流行,且血清学阳性率极高,暴发风险严峻。然而,目前缺乏适用于现场、无需复杂仪器的快速检测技术。本研究旨在开发一种基于RT-ERACRISPR-Cas12a技术的EHDV核酸检测新方法,以实现对EHDV的高灵敏、高特异、快速且可视化的现场检测。

方法:本研究首先通过对EHDV不同血清型基因组序列进行比对分析,选定高度保守的S1基因片段作为检测靶标,并设计特异性crRNA。通过荧光检测法筛选并优化了CRISPR-Cas12a系统中的crRNACas12a蛋白的最佳工作浓度。随后,针对该靶标设计了多对RT-ERA引物,通过筛选获得了最优扩增引物对(F6/R3)。将优化的RT-ERA扩增体系与CRISPR-Cas12a检测系统联用,构建了RT-ERA/CRISPR-Cas12a检测平台。通过使用梯度稀释的病毒RNA评估了该系统的检测灵敏度;通过检测蓝舌病病毒(BTV)、中山病毒(CHUV)等其他常见反刍动物病原体评估其特异性。最后,使用54份临床样本,分别经传统TRIzol提取法和HUDSON快速处理法处理样本后,将该检测系统与已建立的实时荧光RT-PCR方法进行比较,以评估其临床应用的灵敏度和特异性。

结果:本研究成功建立了EHDVRT-ERA/CRISPR-Cas12a检测方法。优化的CRISPR-Cas12a系统在75 ng Cas12a蛋白和400 nM crRNA1条件下效果最佳。此外,最优RT-ERA引物对为F6/R3。该联用检测系统的灵敏度极高,荧光读值法和横向流动试纸条法的检测下限分别可达1.7 × 101拷贝/反应和1.7 × 102拷贝/反应。特异性试验表明,该系统能有效检测EHDV-1, 2, 4-8, 108种血清型,而对BTV等其他病原体无一交叉反应。在54份临床样本检测中,基于TRIzol提取RNA的方法与实时荧光RT-PCR结果完全一致(灵敏度与特异性均为100%);基于HUDSON快速处理的样本,其检测灵敏度为96%,特异性仍保持100%,可在无需核酸纯化的条件下实现快速检测。



Online: 23 September 2025  
Fund: 

This study was supported by the National Key Research and Development Program of China (Grant No. 2022YFF0710500, No. 2023YFF0724603), Key Research & Development Program of Heilongjiang province (Innovation Base) (JD2023SJ10) and Central Public-interest Scientific Institution Basal Research (1610302023003). 

About author:  Dong Zhou,Tel: +86+17852877096,E-mail: zhoudong0719@163.com; Junyong Guan, Tel: +86+15237393287, E-mail: guanzky@163.com; #Correspondence Yinglin Qi, Tel: +86+13897547758, E-mail: qiyinglin@caas.cn; Caixia Gao, Tel: +86+15114516823, E-mail: gaocaixia@caas.cn * These authors contributed equally to this study.

Cite this article: 

Dong Zhou, Junyong Guan, Haibo Yu, Yuntong Shao, Changyou Xia, Caixia Gao, Yinglin Qi. 2025. Rapid and Visual On-Site Detection System for Epizootic Hemorrhagic Disease Virus Based on a Combination of CRISPR-Cas12a and RT-ERA. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.023

Abudayyeh O O, Gootenberg J S, Konermann S, Joung J, Slaymaker I M, Cox D B, Shmakov S, Makarova K S, Semenova E, Minakhin L, Severinov K, Regev A, Lander E S, Koonin E V, Zhang F. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, aaf5573.

Anthony S J, Maan N, Maan S, Sutton G, Attoui H, Mertens P P. 2009. Genetic and phylogenetic analysis of the core proteins VP1, VP3, VP4, VP6 and VP7 of epizootic haemorrhagic disease virus (EHDV). Virus Reserach, 145, 187-199.

Cao S, Ma D, Xie J, Wu Z, Yan H, Ji S, Zhou M, Zhu S. 2024. Point-of-care testing diagnosis of African swine fever virus by targeting multiple genes with enzymatic recombinase amplification and CRISPR/Cas12a System. Frontiers in Cellular and Infection Microbiology, 14, 1474825.

Chen J, Su H, Kim J H, Liu L, Liu R. 2024. Recent advances in the CRISPR/Cas system-based visual detection method. Journal of Analytical Methods in Chemistry, 16, 6599-6614.

Chen J S, Ma E, Harrington L B, Da Costa M, Tian X, Palefsky J M, Doudna J A. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360, 436-439.

Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert F T, Weidmann M. 2013. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. Journal of Clinical Microbiology, 51, 1110-1117.

Gootenberg J S, Abudayyeh O O, Lee J W, Essletzbichler P, Dy A J, Joung J, Verdine V, Donghia N, Daringer N M, Freije C A, Myhrvold C, Bhattacharyya R P, Livny J, Regev A, Koonin E V, Hung D T, Sabeti P C, Collins J J, Zhang F. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442.

He Y, Meng J, Li N, Li Z, Wang D, Kou M, Yang Z, Li Y, Zhang L, Wang J. 2024. Isolation of Epizootic Hemorrhagic Disease Virus Serotype 10 from Culicoides tainanus and Associated Infections in Livestock in Yunnan, China. Viruses, 16.

Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. 2023. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms, 11.

Kedmi M, Van Straten M, Ezra E, Galon N, Klement E. 2010. Assessment of the productivity effects associated with epizootic hemorrhagic disease in dairy herds. Journal of Dairy Science, 93, 2486-2495.

Li L, Li S, Gu D, Xu Y, Wang J. 2023. CRISPR-Cas12-Based Diagnostic Applications in Infectious and Zoonotic Diseases. Methods in Molecular Biology, 2621, 267-278.

Li S Y, Cheng Q X, Liu J K, Nie X Q, Zhao G P, Wang J. 2018. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Research, 28, 491-493.

Maan N S, Maan S, Nomikou K, Johnson D J, El Harrak M, Madani H, Yadin H, Incoglu S, Yesilbag K, Allison A B, Stallknecht D E, Batten C, Anthony S J, Mertens P P. 2010. RT-PCR assays for seven serotypes of epizootic haemorrhagic disease virus & their use to type strains from the Mediterranean region and North America. PLoS One, 5.

Maan N S, Maan S, Potgieter A C, Wright I M, Belaganahalli M, Mertens P P C. 2017. Development of Real-Time RT-PCR Assays for Detection and Typing of Epizootic Haemorrhagic Disease Virus. Transboundary and Emerging Diseases, 64, 1120-1132.

Myhrvold C, Freije C A, Gootenberg J S, Abudayyeh O O, Metsky H C, Durbin A F, Kellner M J, Tan A L, Paul L M, Parham L A, Garcia K F, Barnes K G, Chak B, Mondini A, Nogueira M L, Isern S, Michael S F, Lorenzana I, Yozwiak N L, MacInnis B L, Bosch I, Gehrke L, Zhang F, Sabeti P C. 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 360, 444-448.

Ohashi S, Yoshida K, Yanase T, Tsuda T. 2002. Analysis of intratypic variation evident in an Ibaraki virus strain and its epizootic hemorrhagic disease virus serogroup. Journal of Clinical Microbiology, 40, 3684-3688.

Omori T, Inaba Y, Morimoto T, Tanaka Y, Ishitani R. 1969. Ibaraki virus, an agent of epizootic disease of cattle resembling bluetongue. I. Epidemiologic, clinical and pathologic observations and experimental transmission to calves. Japanese Journal of Microbiology, 13, 139-157.

Potgieter A C, Page N A, Liebenberg J, Wright I M, Landt O, van Dijk A A. 2009. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. Journal of General Virology, 90, 1423-1432.

Qi Y, Wang F, Chang J, Zhang Y, Zhu J, Li H, Yu L. 2019. Identification and complete-genome phylogenetic analysis of an epizootic hemorrhagic disease virus serotype 7 strain isolated in China. Archives of Virology, 164, 3121-3126.

Shirafuji H, Kato T, Yamakawa M, Tanaka T, Minemori Y, Yanase T. 2017. Characterization of genome segments 2, 3 and 6 of epizootic hemorrhagic disease virus strains isolated in Japan in 1985-2013: Identification of their serotypes and geographical genetic types. Infection, Genetics and Evolution, 53, 38-46.

Wang X, Ji P, Fan H, Dang L, Wan W, Liu S, Li Y, Yu W, Li X, Ma X, Ma X, Zhao Q, Huang X, Liao M. 2020a. CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Communications Biology, 3, 62.

Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, Wan W, Ma X, Liu J, Yang G, Yang Z, Huang X, Liu M. 2020b. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Science Bulletin, 65, 1436-1439.

Wang Y, Chen H, Lin K, Han Y, Gu Z, Wei H, Mu K, Wang D, Liu L, Jin R, Song R, Rong Z, Wang S. 2024. Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device. Nature Communications, 15, 3279.

Wilson W C, Ruder M G, Klement E, Jasperson D C, Yadin H, Stallknecht D E, Mead D G, Howerth E. 2015. Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel. Journal of General Virology, 96, 1400-1410.

Xia S, Chen X. 2020. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA. Cell Discovery, 6, 37.

Xin J, Dong J, Li J, Ye L, Zhang C, Nie F, Gu Y, Ji X, Song Z, Luo Q, Ai J, Han D. 2023. Current Knowledge on Epizootic Haemorrhagic Disease in China. Vaccines, 11.

Yadin H, Brenner J, Bumbrov V, Oved Z, Stram Y, Klement E, Perl S, Anthony S, Maan S, Batten C, Mertens P P. 2008. Epizootic haemorrhagic disease virus type 7 infection in cattle in Israel. Vet Record, 162, 53-56.

Yang et al. 2024. Research Advances in Epidemiologicall Study of Epizootic Hemorrhagic Disease. . Chinese Journal of Animal Infectious Diseases. (in Chinese)

Yang H, Li Z, Wang J, Li Z, Yang Z, Liao D, Zhu J, Li H. 2020. Novel Serotype of Epizootic Hemorrhagic Disease Virus, China. Emerging Infectious Diseases, 26, 3081-3083.

Zhou J, Li Z, Seun Olajide J, Wang G. 2024. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon, 10, e26179.

No related articles found!
No Suggested Reading articles found!