Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
MFAP5 enhances the cold resistance of piglets by promoting the transition of adipocyte progenitor cells to fibroblast lineage

Xiangfei Ma1, Mengting Li1, Shengda Qiu1, Di Liu2, Hong Ma2, Wei Wei1, Lifan Zhang1, Zan Huang1#, Jie Chen1#

1 College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China

2 Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China

 Highlights 

Dorsal subcutaneous adipose tissues (subWATs) in piglets exhibits thermogenic potential and fibrotic remodeling under cold stress.

Single-nucleus RNA-seq (snRNA-seq) and RNA-seq identify MFAP5 as a critical mediator of cold-induced adipose plasticity, promoting fibrogenic lineage commitment in fibro/adipogenic progenitors (FAPs).

MFAP5 overexpression or conditioned medium inhibits adipocyte differentiation and induces fibroblast-like phenotypes in C3H10T1/2 and porcine stromal vascular fraction (SVF) cells, accompanied by elevated mitochondrial activity.

MFAP5 activates the Hippo signaling pathway, increasing nuclear translocation of YAP1 and upregulating fibrogenic markers (e.g., ACTA2, CTGF).

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

猪缺乏典型的棕色脂肪组织,但有研究表明猪脂肪细胞具有不依赖UCP1产热的能力,然而目前对这些产热脂肪细胞的发育过程和调控机制仍然缺乏了解。本研究探究了二花脸仔猪背部皮下脂肪组织在冷刺激下的适应性反应机制,重点关注纤维/脂肪生成祖细胞(FAPs)的分化命运转变及其调控分子微纤维相关蛋白5MFAP5)的作用,揭示了冷刺激条件下脂肪组织纤维化与产热功能的关联。本文以4对体重相近的6-8周龄雄性全同胞二花脸仔猪为试验材料,将全同胞二花脸仔猪随机分为室温组(28±0.5℃)和冷刺激组(11±0.5℃)进行30天试验。采集10个部位脂肪组织进行分析,发现背部皮下脂肪组织在冷激下表现出显著的产热潜力,同时观察到背部皮下脂肪组织发生组织结构重塑。综合分析背部皮下脂肪组织转录组测序和单细胞测序数据,发现冷刺激促进FAPs向非脂肪成纤维细胞分化,且MFAP5是冷刺激背部皮下脂肪组织可塑性的潜在调节因子。体外细胞试验证实,过表达MFAP5或添加MFAP5条件培养基抑制前脂肪细胞分化为成熟脂肪细胞,促进其向非脂肪成纤维细胞分化,并显著增强非脂肪成纤维化细胞的线粒体生物合成。进一步研究表明,MFAP5主要通过Hippo-YAP1信号通路发挥作用。综上所述,本研究发现冷刺激通过上调二花脸仔猪背部皮下脂肪组织中MFAP5表达,激活Hippo-YAP1信号通路,促使FAPs分化为非脂肪成纤维细胞,进而抑制脂肪生成并促进脂肪组织纤维化和产热适应。这一发现揭示了MFAP5作为冷适应调控因子的新功能,为理解哺乳动物脂肪组织可塑性提供了新视角。



Abstract  

Although pigs lack classical brown adipose tissue, several studies have demonstrated that porcine adipocytes possess the capacity to undergo thermogenesis through UCP1-independent mechanisms. However, the developmental processes and regulatory mechanisms underlying these thermogenic adipocytes remain poorly characterized. Here, we found that dorsal subcutaneous adipose tissue in pigs exhibits significant thermogenic potential under cold stress. Notably, we observed substantial cold-induced structural remodeling in dorsal subcutaneous adipose tissue, characterized by increased fibrotic deposition. Through integrated analysis of snRNA-seq and RNA-seq data on dorsal subcutaneous adipose tissue, we identified MFAP5, which encodes a microfibril-associated glycoprotein in the extracellular matrix, as a potential regulator for cold-induced the plasticity of dorsal subcutaneous adipose tissue. Both MFAP5 overexpression and MFAP5-conditioned medium not only inhibit preadipocytes differentiation into adipocytes but also promote their commitment to non-adipogenic fibrogenic lineages. Furthermore, MFAP5 treatments significantly enhanced mitochondrial biogenesis of these fibrogenic cells. Mechanistic investigations elucidated that these phenotypic alterations are predominantly mediated through the Hippo signaling pathway. In summary, our findings elucidate the pivotal role of MFAP5 in regulating adipocyte development following cold exposure, providing crucial insights into the molecular mechanisms underlying porcine adaptation to cold stress.

Keywords:  piglets       cold adaptation        cell fate        microfibril associated protein 5  
Online: 04 September 2025  
Fund: 

This work was supported by grants from the Joint Funds of the National Natural Science Foundation of China (No. U20A2052), National Natural Science Foundation of China (No. 32372853), the Jiangsu Agriculture Science and Technology Innovation Fund (No. CX(23)3137) and National Natural Science Foundation of China (No. 32170847). 

About author:  Xiangfei Ma, E-mail: 2021205002@stu.njau.edu.cn #Correspondence Jie Chen, E-mail: jiechen@njau.edu.cn; Zan Huang, E-mail: huangzan@njau.edu.cn

Cite this article: 

Xiangfei Ma, Mengting Li, Shengda Qiu, Di Liu, Hong Ma, Wei Wei, Lifan Zhang, Zan Huang, Jie Chen. 2025. MFAP5 enhances the cold resistance of piglets by promoting the transition of adipocyte progenitor cells to fibroblast lineage. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.006

Berg F, Gustafson U, Andersson L. 2006. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet, 2, e129.

Bornstein M R, Neinast M D, Zeng X, Chu Q, Axsom J, Thorsheim C, Li K, Blair M C, Rabinowitz J D, Arany Z. 2023. Comprehensive quantification of metabolic flux during acute cold stress in mice. Cell Metab, 35, 2077-2092.e2076.

Burl R B, Ramseyer V D, Rondini E A, Pique-Regi R, Lee Y H, Granneman J G. 2018. Deconstructing Adipogenesis Induced by β3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab, 28, 300-309.e304.

Cheng Y M, Hong P C, Song M M, Zhu H N, Qin J, Zhang Z D, Chen H, Ma X Z, Tian M Y, Zhu W Y, Huang Z. 2023. An immortal porcine preadipocyte cell strain for efficient production of cell-cultured fat. Commun Biol, 6, 1202.

Côté J A, Ostinelli G, Gauthier M F, Lacasse A, Tchernof A. 2019. Focus on dedifferentiated adipocytes: characteristics, mechanisms, and possible applications. Cell Tissue Res, 378, 385-398.

Cristancho A G, Lazar M A. 2011. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol, 12, 722-734.

Datta R, Podolsky M J, Atabai K. 2018. Fat fibrosis: friend or foe? JCI Insight, 3,

Du K, Ramachandran A, Mcgill M R, Mansouri A, Asselah T, Farhood A, Woolbright B L, Ding W X, Jaeschke H. 2017. Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol, 108, 339-350.

Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. 2024. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord, 25, 279-308.

Han C, Leonardo T R, Romana-Souza B, Shi J, Keiser S, Yuan H, Altakriti M, Ranzer M J, Ferri-Borgogno S, Mok S C, Koh T J, Hong S J, Chen L, Dipietro L A. 2023. Microfibril-associated protein 5 and the regulation of skin scar formation. Sci Rep, 13, 8728.

He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. 2023. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience, 26, 106289.

Hoerst K, Van Den Broek L, Sachse C, Klein O, Von Fritschen U, Gibbs S, Hedtrich S. 2019. Regenerative potential of adipocytes in hypertrophic scars is mediated by myofibroblast reprogramming. J Mol Med (Berl), 97, 761-775.

Hou L, Shi J, Cao L, Xu G, Hu C, Wang C. 2017. Pig has no uncoupling protein 1. Biochem Biophys Res Commun, 487, 795-800.

Hou L, Xie M, Cao L, Shi J, Xu G, Hu C, Wang C. 2018. Browning of Pig White Preadipocytes by Co-Overexpressing Pig PGC-1α and Mice UCP1. Cell Physiol Biochem, 48, 556-568.

Hu Y, Tang F, Zhang D, Shen S, Peng X. 2023. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants. Hortic Res, 10, uhad212.

Huan-Xian C, Na L, Li-Ping G, Lu L, Si-Yuan X, Gui-Ping Z, Jie W. 2023. TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken. Journal of Integrative Agriculture, 22, 853-863.

Huang J, Wu S, Barrera J, Matthews K, Pan D. 2005. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell, 122, 421-434.

Hwang J H, Kim K M, Oh H T, Yoo G D, Jeong M G, Lee H, Park J, Jeong K, Kim Y K, Ko Y G, Hwang E S, Hong J H. 2022. TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A. Nat Commun, 13, 653.

Ikeda K, Maretich P, Kajimura S. 2018. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol Metab, 29, 191-200.

Jang E H, Lee J H, Kim S A. 2021. Acute Valproate Exposure Induces Mitochondrial Biogenesis and Autophagy with FOXO3a Modulation in SH-SY5Y Cells. Cells, 10,

Kelley K W, Blecha F, Regnier J A. 1982. Cold exposure and absorption of colostral immunoglobulins by neonatal pigs. J Anim Sci, 55, 363-368.

Kotarsky C J, Johnson N R, Mahoney S J, Mitchell S L, Schimek R L, Stastny S N, Hackney K J. 2021. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol Rep, 9, e14868.

Krois C R, Vuckovic M G, Huang P, Zaversnik C, Liu C S, Gibson C E, Wheeler M R, Obrochta K M, Min J H, Herber C B, Thompson A C, Shah I D, Gordon S P, Hellerstein M K, Napoli J L. 2019. RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding. Cell Mol Life Sci, 76, 2425-2447.

Le Dividich J, Noblet J. 1981. Colostrum intake and thermoregulation in the neonatal pig in relation to environmental temperature. Biol Neonate, 40, 167-174.

Lemaire R, Bayle J, Mecham R P, Lafyatis R. 2007. Microfibril-associated MAGP-2 stimulates elastic fiber assembly. J Biol Chem, 282, 800-808.

Li P H, Ma X, Zhang Y Q, Zhang Q, Huang R H. 2017. Progress in the physiological and genetic mechanisms underlying the high prolificacy of the Erhualian pig. Yi Chuan, 39, 1016-1024.

Lin D, Chun T H, Kang L. 2016. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol, 119, 8-16.

Lin J, Cao C, Tao C, Ye R, Dong M, Zheng Q, Wang C, Jiang X, Qin G, Yan C, Li K, Speakman J R, Wang Y, Jin W, Zhao J. 2017. Cold adaptation in pigs depends on UCP3 in beige adipocytes. J Mol Cell Biol, 9, 364-375.

Lin W, Tang Y, Zhao Y, Zhao J, Zhang L, Wei W, Chen J. 2020. MiR-144-3p Targets FoxO1 to Reduce Its Regulation of Adiponectin and Promote Adipogenesis. Front Genet, 11, 603144.

Mammoto A, Muyleart M, Kadlec A, Gutterman D, Mammoto T. 2018. YAP1-TEAD1 signaling controls angiogenesis and mitochondrial biogenesis through PGC1α. Microvasc Res, 119, 73-83.

Maniyadath B, Zhang Q, Gupta R K, Mandrup S. 2023. Adipose tissue at single-cell resolution. Cell Metab, 35, 386-413.

Miller C N, Yang J Y, England E, Yin A, Baile C A, Rayalam S. 2015. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes. PLoS One, 10, e0138344.

Newman A a C, Serbulea V, Baylis R A, Shankman L S, Bradley X, Alencar G F, Owsiany K, Deaton R A, Karnewar S, Shamsuzzaman S, Salamon A, Reddy M S, Guo L, Finn A, Virmani R, Cherepanova O A, Owens G K. 2021. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab, 3, 166-181.

Norreen-Thorsen M, Struck E C, Öling S, Zwahlen M, Von Feilitzen K, Odeberg J, Lindskog C, Pontén F, Uhlén M, Dusart P J, Butler L M. 2022. A human adipose tissue cell-type transcriptome atlas. Cell Rep, 40, 111046.

O'mara A E, Johnson J W, Linderman J D, Brychta R J, Mcgehee S, Fletcher L A, Fink Y A, Kapuria D, Cassimatis T M, Kelsey N, Cero C, Sater Z A, Piccinini F, Baskin A S, Leitner B P, Cai H, Millo C M, Dieckmann W, Walter M, Javitt N B, et al. 2020. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest, 130, 2209-2219.

Peng Z, Ren Z, Tong Z, Zhu Y, Zhu Y, Hu K. 2023. Interactions between MFAP5 + fibroblasts and tumor-infiltrating myeloid cells shape the malignant microenvironment of colorectal cancer. J Transl Med, 21, 405.

Rockey D C, Weymouth N, Shi Z. 2013. Smooth muscle α actin (Acta2) and myofibroblast function during hepatic wound healing. PLoS One, 8, e77166.

Shao M, Wang Q A, Song A, Vishvanath L, Busbuso N C, Scherer P E, Gupta R K. 2019. Cellular Origins of Beige Fat Cells Revisited. Diabetes, 68, 1874-1885.

Shook B A, Wasko R R, Mano O, Rutenberg-Schoenberg M, Rudolph M C, Zirak B, Rivera-Gonzalez G C, López-Giráldez F, Zarini S, Rezza A, Clark D A, Rendl M, Rosenblum M D, Gerstein M B, Horsley V. 2020. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 26, 880-895.e886.

Tamura T, Kodama T, Sato K, Murai K, Yoshioka T, Shigekawa M, Yamada R, Hikita H, Sakamori R, Akita H, Eguchi H, Johnson R L, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. 2021. Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest, 131,

Trayhurn P, Temple N J, Van Aerde J. 1989. Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig. Can J Physiol Pharmacol, 67, 1480-1485.

Vaittinen M, Kolehmainen M, Rydén M, Eskelinen M, Wabitsch M, Pihlajamäki J, Uusitupa M, Pulkkinen L. 2015. MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity (Silver Spring), 23, 1371-1378.

Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, Rojas M, Lafyatis R. 2019. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis, 78, 1379-1387.

Vijay J, Gauthier M F, Biswell R L, Louiselle D A, Johnston J J, Cheung W A, Belden B, Pramatarova A, Biertho L, Gibson M, Simon M M, Djambazian H, Staffa A, Bourque G, Laitinen A, Nystedt J, Vohl M C, Fraser J D, Pastinen T, Tchernof A, et al. 2020. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab, 2, 97-109.

Villarroya F, Cereijo R, Villarroya J, Giralt M. 2017. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol, 13, 26-35.

Winther S, Isidor M S, Basse A L, Skjoldborg N, Cheung A, Quistorff B, Hansen J B. 2018. Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption. Am J Physiol Endocrinol Metab, 314, E214-e223.

Wu Y, Li C S, Meng R Y, Jin H, Chai O H, Kim S M. 2024. Regulation of Hippo-YAP/CTGF signaling by combining an HDAC inhibitor and 5-fluorouracil in gastric cancer cells. Toxicol Appl Pharmacol, 482, 116786.

Xiao F, Jiang H, Li Z, Jiang X, Chen S, Niu Y, Yin H, Shu Y, Peng B, Lu W, Li X, Li Z, Lan S, Xu X, Guo F. 2023. Reduced hepatic bradykinin degradation accounts for cold-induced BAT thermogenesis and WAT browning in male mice. Nat Commun, 14, 2523.

Xie X, Huang C, Huang Y, Zou X, Zhou R, Ai H, Huang L, Ma J. 2023. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front Genet, 14, 1141411.

Yeung T L, Leung C S, Yip K P, Sheng J, Vien L, Bover L C, Birrer M J, Wong S T C, Mok S C. 2019. Anticancer Immunotherapy by MFAP5 Blockade Inhibits Fibrosis and Enhances Chemosensitivity in Ovarian and Pancreatic Cancer. Clin Cancer Res, 25, 6417-6428.

Zeve D, Seo J, Suh J M, Stenesen D, Tang W, Berglund E D, Wan Y, Williams L J, Lim A, Martinez M J, Mckay R M, Millay D P, Olson E N, Graff J M. 2012. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metab, 15, 492-504.

Zhang C, Fu Q, Shao K, Liu L, Ma X, Zhang F, Zhang X, Meng L, Yan C, Zhao X. 2022. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation. Cell Signal, 99, 110442.

Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. 2023. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Sci Rep, 13, 5589.

Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J, Song R, Jia Q, Wang X, Li Y, Zhang N, Piao Z, Ye R, Speakman J R, Wang H, Zhou Q, et al. 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A, 114, E9474-e9482.

[1] WANG Man, YU Bing, HE Jun, YU Jie, LUO Yu-heng, LUO Jun-qiu, MAO Xiang-bin, CHEN Dai-wen. The toxicological effect of dietary excess of saccharicterpenin, the extract of camellia seed meal, in piglets[J]. >Journal of Integrative Agriculture, 2020, 19(1): 211-224.
[2] ZHU Cui, WANG Li, WEI Shao-yong, CHEN Zhuang, MA Xian-yong, ZHENG Chun-tian, JIANG Zongyong. Effect of yeast Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2029-2037.
[3] ZHU Cui, GUO Chang-yi, GAO Kai-guo, WANG Li, CHEN Zhuang, MA Xian-yong, JIANG Zong-yong . Dietary arginine supplementation in multiparous sows during lactation improves the weight gain of suckling piglets[J]. >Journal of Integrative Agriculture, 2017, 16(03): 648-655.
[4] ZHANG Tian, WANG Li-gang, SHI Hui-bi, YAN Hua, ZHANG Long-chao, LIU Xin, PU Lei, LIANG Jing, ZHANG Yue-bo, ZHAO Ke-bin, WANG Li-xian . Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows[J]. >Journal of Integrative Agriculture, 2016, 15(4): 848-854.
[5] HANG Su-qin , ZHU Wei-yun. Gut Bacterial and Lactobacilli Communities of Weaning Piglets in Response to Mannan Oligosaccharide and Sugar Beet Pulp In vitro Fermentation[J]. >Journal of Integrative Agriculture, 2012, 12(1): 122-133.
[6] WANG Xiu-qi, FENG You, SHU Gang, JIANG Qing-yan, YANG Jing-pei, ZHANG Zi-feng. Effect of Dietary Supplementation with Hydrolyzed Wheat Gluten on Growth Performance, Cell Immunity and Serum Biochemical Indices of Weaned Piglets (Sus scrofa)[J]. >Journal of Integrative Agriculture, 2011, 10(6): 938-945.
No Suggested Reading articles found!