Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Comprehensive evaluation of HA epitope modifications in H9N2 subtype avian influenza vaccines for broad cross-protection
Nan Zhang1*, Keji Quan1*, Mengqi Lin1, Zijun Lu1, Zhifan Li1, Yiming Yang1, Nuo Xu1, Hui Yang1, 2, 3, 4, Jie Zhu5, George Fei Zhang6, Tao Qin1, 2, 3, 4, Sujuan Chen1, 2, 3, 4#, Daxin Peng1, 2, 3, 4#, Xiufan Liu1, 2, 3, 4

1 College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China

2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou 225009, China

3 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China

4 Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou 225009, China

5 Shandong Binzhou Wohua Bioengineering Co., Ltd., Binzhou, Shandong, 256600, China

6 Laboratory of Microbiology and Immunology, Shandong Binzhou Wohua Bioengineering Co., Ltd., Binzhou, Shandong, 256600, China

 Highlights: 

1. Mutations in HA antigenic sites of H9N2 AIV were systematically analyzed using three-dimensional antigenic cartography and monoclonal antibody profiling.

2. R118-A was identified as a vaccine candidate with cross-protection against diverse H9N2 antigenic lineages.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

(目的)H9N2亚型禽流感病毒(Avian influenza virusAIV)因其血凝素(HemagglutininHA)蛋白频繁发生抗原漂移,导致灭活疫苗的保护效果减弱,持续对全球家禽养殖业构成威胁。前期研究发现,H9N2 AIV HA蛋白中的12个抗原残基在其两个主要抗原群之间的抗原漂移中起关键作用。为进一步阐明这些抗原残基对病毒抗原性与交叉保护力的影响。(方法)本研究以H9N2 group 2B4.7)毒株A/chicken/Jiangyin/JY120118/2018R118)为母本,构建了替换group 1毒株(B4.4B4.6HA蛋白抗原区域(AB1B2E)的单一表位或联合表位突变株,通过三维抗原制图及单抗排谱分析各突变对病毒抗原性的改变;随后,选择变突株制备免疫血清,进行交叉血凝抑制(Hemagglutinin inhibitionHI)与微量中和(MicroneutralizationMN)试验;最终选择候选疫苗株免疫SPF鸡,采用不同H9N2毒株进行攻毒试验,评估其交叉保护效果。(结果)单抗排谱显示突变株R118-AR118-AER118-B1R118-AB1E能同时被group 1group 2的单抗识别。在HIMN试验中R118-A的免疫血清对group 1group 2抗原均具有良好的覆盖能力,个体间免疫反应一致性较高。动物试验表明,R118-Agroup 2 毒株W120118攻毒的保护效果与母本相当,而针对group 1毒株W100318group 2异源毒株W05091攻毒时,R118-A显著减少了排毒量和排毒动物的个体数量。(结论)因此,基于抗原区域AD145ST149KG153D)改造的疫苗候选株R118-A对不同分支的H9N2亚型AIV的感染具有良好的交叉保护作用,为广谱H9N2疫苗的设计与优化提供了理论支持和实践指导。

创新性:

1. 通过三维抗原制图与单克隆抗体排谱技术,系统评估了HA蛋白不同抗原区域突变对H9N2禽流感病毒抗原性的影响。

2. 通过上述技术筛选获得了疫苗候选株R118-A,其对不同抗原分支的H9N2禽流感病毒感染具有交叉保护能力。



Abstract  

The hemagglutinin (HA) protein of the H9N2 subtype avian influenza virus (AIV) undergoes frequent antigenic drift, which compromises the efficacy of existing inactivated vaccines. We have identified 12 key HA residues responsible for antigenic differences between the 2 major H9N2 antigenic groups; however, their role in eliciting broad cross-reactive immunity remains undefined. In this study, we systematically evaluated the impact of single- and multi-residue mutations in HA antigenic regions A, B1, B2, and E on viral antigenicity using antigenic cartography and monoclonal antibody profiling. 4 recombinant viruses—R118-A, R118-AE, R118-B1, and R118-AB1E—demonstrated broadened antigenic reactivity and were selected for further analysis. Among them, R118-A elicited immune sera with high hemagglutination inhibition and microneutralization titers against a diverse panel of H9N2 strains and exhibited broad antigenic coverage on antigenic cartography. In chicken challenge experiments, immunization with R118-A conferred cross-protection against group 1 (B4.4+B4.6) and group 2 (B4.7) H9N2 viruses, underscoring the critical role of site A modifications in broadening vaccine protection. These findings offer theoretical support and practical strategies for the rational design of next-generation H9N2 vaccines with improved cross-protective efficacy.

Keywords:  H9N2 avian influenza virus       Hemagglutinin        Monoclonal antibody profiling        Antigenic cartography        Broad-spectrum protection  
Online: 21 August 2025  
Fund: 

This research was funded by the National Key R&D Project of China (2021YFD1800202), the Jiangsu Provincial Key R&D Project, China (BE2022329), the Jiangsu Provincial Natural Science Fund for Distinguished Young Scholars, China (BK20240045), the “Jie Bang Gua Shuai” Project at Yangzhou University, China (YZUXK202316), the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province, China (CX(23)3071), the Outstanding Technological Innovation Team of College and University in Jiangsu Province, China ([2021] No.1), 111 Project (D18007), and the Priority Academic Program Development of Jiangsu Higher Education, China (PAPD).

About author:  #Correspondence Daxin Peng, E-mail: pengdx@yzu.edu.cn; Sujuan Chen. E-mail: chensj@yzu.edu.cn, Tel: +86-514-87975893. * These authors have contributed equally to this work.

Cite this article: 

Nan Zhang, Keji Quan, Mengqi Lin, Zijun Lu, Zhifan Li, Yiming Yang, Nuo Xu, Hui Yang, Jie Zhu, George Fei Zhang, Tao Qin, Sujuan Chen, Daxin Peng, Xiufan Liu. 2025. Comprehensive evaluation of HA epitope modifications in H9N2 subtype avian influenza vaccines for broad cross-protection. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.08.018

Adler D, Murdoch D. 2017. Rgl: 3D visualization using OpenGL.

Andrews S F, Huang Y, Kaur K, Popova L I, Ho I Y, Pauli N T, Henry Dunand C J, Taylor W M, Lim S, Huang M, Qu X, Lee J H, Salgado-Ferrer M, Krammer F, Palese P, Wrammert J, Ahmed R, Wilson P C. 2015. Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med, 7, 316ra192.

Broecker F, Liu S T H, Suntronwong N, Sun W, Bailey M J, Nachbagauer R, Krammer F, Palese P. 2019. A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains. NPJ Vaccines, 4, 31.

Carnaccini S, Perez D R. 2020. H9 influenza viruses: an emerging challenge. Cold Spring Harb Perspect Med, 10, a038588.

Chen S, Zhu Y, Yang D, Yang Y, Shi S, Qin T, Peng D, Liu X. 2017. Efficacy of live-attenuated H9N2 influenza vaccine candidates containing NS1 truncations against H9N2 avian influenza viruses. Front Microbiol, 8, 1086.

Dong J, Zhou Y, Pu J, Liu L. 2022. Status and challenges for vaccination against avian H9N2 influenza virus in China. Life (Basel), 12, 1326.

Fusaro A, Pu J, Zhou Y, Lu L, Tassoni L, Lan Y, Lam T T, Song Z, Bahl J, Chen J, Gao G F, Monne I, Liu J. 2024. Proposal for a global classification and nomenclature system for A/H9 influenza viruses. Emerg Infect Dis, 30, 1-13.

Guo J, Wang Y, Zhao C, Gao X, Zhang Y, Li J, Wang M, Zhang H, Liu W, Wang C, Xia Y, Xu L, He G, Shen J, Sun X, Wang W, Han X, Zhang X, Hou Z, Jin X, Peng N, Li Y, Deng G, Cui P, Zhang Q, Li X, Chen H. 2021. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg Microbes Infect, 10, 2098-2112.

Hoffmann E, Stech J, Guan Y, Webster R G, Perez D R. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 146, 2275-2289.

Hu Y F, Yuen T T, Gong H R, Hu B, Hu J C, Lin X S, Rong L, Zhou C L, Chen L L, Wang X, Lei C, Yau T, Hung I F, To K K, Yuen K Y, Zhang B Z, Chu H, Huang J D. 2023. Rational design of a booster vaccine against COVID-19 based on antigenic distance. Cell Host Microbe, 31, 1301-1316.e1308.

Kaverin N V, Rudneva I A, Ilyushina N A, Lipatov A S, Krauss S, Webster R G. 2004. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol, 78, 240-249.

Lee M N, Ye C, Villani A C, Raj T, Li W, Eisenhaure T M, Imboywa S H, Chipendo P I, Ran F A, Slowikowski K, Ward L D, Raddassi K, Mccabe C, Lee M H, Frohlich I Y, Hafler D A, Kellis M, Raychaudhuri S, Zhang F, Stranger B E, Benoist C O, De Jager P L, Regev A, Hacohen N. 2014. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science, 343, 1246980.

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 49, W293-W296.

Peacock T, Reddy K, James J, Adamiak B, Barclay W, Shelton H, Iqbal M. 2016. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci Rep, 6, 18745.

Peacock T P, Harvey W T, Sadeyen J R, Reeve R, Iqbal M. 2018. The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect, 7, 176-187.

Peng Y, Zou Y, Li H, Li K, Jiang T. 2014. Inferring the antigenic epitopes for highly pathogenic avian influenza H5N1 viruses. Vaccine, 32, 671-676.

Ping J, Lopes T J S, Nidom C A, Ghedin E, Macken C A, Fitch A, Imai M, Maher E A, Neumann G, Kawaoka Y. 2015. Development of high-yield influenza A virus vaccine viruses. Nat Commun, 6, 8148.

Poh Z W, Wang Z, Kumar S R, Yong H Y, Prabakaran M. 2020. Modification of neutralizing epitopes of hemagglutinin for the development of broadly protective H9N2 vaccine. Vaccine, 38, 1286-1290.

Quan K, Zhang N, Lin M, Liu Y, Li Y, Hu Q, Nie M, Qin T, Chen S, Peng D, Liu X. 2025. Development of a broad-spectrum subunit vaccine against H9N2 avian influenza using HA stem domain scaffold and snoopligase system. NPJ Vaccines, 10, 136.

Quan K, Zhang N, Lin M, Liu Y, Li Y, Hu Q, Nie M, Qin T, Li J, Ma H, Chen S, Peng D, Liu X. 2024. Identification of broad-spectrum B-cell and T-cell epitopes of H9 subtype avian influenza virus HA protein using polypeptide scanning. Journal of Integrative Agriculture,

Smith D J, Lapedes A S, De Jong J C, Bestebroer T M, Rimmelzwaan G F, Osterhaus A D, Fouchier R A. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science, 305, 371-376.

Spackman E.2020. Animal influenza virus: methods and protocols.

Steel J, Lowen A C, Wang T T, Yondola M, Gao Q, Haye K, Garcia-Sastre A, Palese P. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio, 1, e00018-00010.

Sun Y, Liu J. 2015. H9N2 influenza virus in China: a cause of concern. Protein Cell, 6, 18-25.

Underwood W, Anthony R J R O M. 2020. AVMA guidelines for the euthanasia of animals: 2020 edition.

Wang X, Ilyushina N A, Lugovtsev V Y, Bovin N V, Couzens L K, Gao J, Donnelly R P, Eichelberger M C, Wan H. 2017. Amino acids in hemagglutinin antigenic site B determine antigenic and receptor binding differences between A(H3N2)v and ancestral seasonal H3N2 influenza viruses. J Virol, 91, e01512-01516.

Wang Z, Li Z, Su X, Qiao Y, Fan W, Li H, Shi B, Qin T, Chen S, Peng D, Liu X. 2019. Enhanced cross-lineage protection induced by recombinant H9N2 avian influenza virus inactivated vaccine. Vaccine, 37, 1736-1742.

Wickham H.2009. Ggplot2: elegant graphics for data analysis.

Wiley D C, Skehel J J. 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem, 56, 365-394.

Wiley D C, Wilson I A, Skehel J J. 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature, 289, 373-378.

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li W X, Wang G T. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 20, 348-355.

Zhang N, Quan K, Chen Z, Hu Q, Nie M, Xu N, Gao R, Wang X, Qin T, Chen S, Peng D, Liu X. 2023. The emergence of new antigen branches of H9N2 avian influenza virus in China due to antigenic drift on hemagglutinin through antibody escape at immunodominant sites. Emerg Microbes Infect, 12, 2246582.

Zhang Y, Cui P, Shi J, Zeng X, Jiang Y, Chen Y, Zhang J, Wang C, Wang Y, Tian G, Chen H, Kong H, Deng G. 2024. A broad-spectrum vaccine candidate against H5 viruses bearing different sub-clade 2.3.4.4 HA genes. NPJ Vaccines, 9, 152.

Zhu Y, Yang D, Ren Q, Yang Y, Liu X, Xu X, Liu W, Chen S, Peng D, Liu X. 2015. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet Microbiol, 178, 144-149.

Zost S J, Wu N C, Hensley S E, Wilson I A. 2019. Immunodominance and antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine immunogens. J Infect Dis, 219, S38-S45.

No related articles found!
No Suggested Reading articles found!