Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
No tillage and stubble retention drive long-term productivity of forage-crop rotation system in the Loess Plateau by boosting soil nutrients

Xiu Dong1, 2, 3, Qian Yang1, 2, 3, Yuying Shen1, 2, 3, Tongtong Guan1, 2, 3, Dong An1, 2, 3, Yan Zhang1, 2, 3, #

1 State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730020, China

2 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

3 National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Lanzhou University, Qingyang 745004, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

免耕和秸秆留茬已被证实是恢复退化土地和提升生态系统生产力的有效措施,但推动生产力提升的内在机制尚不明确。本研究聚焦生态脆弱的黄土高原两年三熟的粮草轮作系统,旨在解析实施长期保护性耕作对籽粒和饲草生产的关键驱动路径,以弥补该领域研究的不足。基于在黄土高原典型雨养农业区22年长期定位试验,设置了传统耕作(T)、传统耕作结合秸秆还田TS)、免耕(NT)和免耕结合秸秆还田NTS)四种处理,研究不同处理下土壤养分、作物和牧草生产力的变化及其驱动因素。结果显示,与T处理相比,TSNTS处理分别使系统生产力显著提高了19%32%NTS处理使玉米产量、小麦产量和大豆生物量分别提高了19%14%52%此外NTS处理下土壤碳氮积累、酶活性提升也最明显,并有效改善了土壤水分储存和温度条件。在0-10 cm土层中,与T处理相比,NTS处理的土壤碳储量和氮储量分别增加了41%53%;βG(β-葡萄糖苷酶)、CBH(纤维二糖水解酶)、βX(β-木糖苷酶)、LAP(亮氨酸氨肽酶)、NAG(β-N-乙酰氨基葡萄糖苷酶)的活性分别提高了45%98%39%50%53%总体而言,长达22年尺度的免耕和秸秆还田通过改善土壤碳氮组分、酶活性、水分和温度,提高了作物生产力。土壤水分和有机碳输入分别是影响饲草生物量和籽粒产量的关键驱动因素。精准识别并调控这些驱动因子,为退化农田可持续管理提供前瞻性理论支撑,对黄土高原雨养区种植-畜牧协同发展具有核心实践价值。综上所述,免耕结合秸秆还田NTS是黄土高原优化农业产量的最适宜土地管理措施,同时促进绿色和可持续农业发展。



Abstract  

No tillage and stubble retention have emerged as effective measures for restoring land degraded and enhancing ecosystem productivity. However, the underlying mechanism driving productivity improvements is not well understood, particularly in ecological fragile region such as the Loess Plateau of China. To address this knowledge gap, a 22-year long-term field experiment was performed to investigate the changes in soil nutrients, crop and forage productivity, and their driving factors following the implementation of conventional tillage (T), conventional tillage combined with stubble retention (TS), no tillage (NT), and no tillage combined with stubble retention (NTS) within a forage-crop rotation system on the Loess Plateau. The results indicated that TS and NTS treatments significantly increased system productivity by 19 and 32%, respectively, with NTS demonstrating the most pronounced benefits. The NTS increased maize yield, wheat yield and soybean biomass by 19, 14 and 52%, compared to T, respectively. Moreover, the NTS treatment resulted in the highest soil carbon and nitrogen accumulation, enzymes activity and overall soil conditions. Soil carbon and nitrogen storage with NTS was increased by 41 and 53% compared to T in the 0-10 cm soil depth, respectively. The activities of βG (β-glucosidase), CBH (cellobiohydrolase), βX (β-xylosidase), LAP (leucine-aminopeptidase), NAG (β-N-acetylglucosaminidase) in NTS increased by 45, 98, 39, 50 and 53%, respectively. Overall, results demonstrated that no tillage combined with stubble retention increased crop productivity by improving soil carbon and nitrogen fractions, enzymes activity and soil moisture. Soil moisture was the key driver affecting forage biomass, whereas organic carbon input primarily influenced grain production. In conclusion, NTS represents the most appropriate land management practice for optimizing agricultural productivity on the Loess Plateau, while facilitating green and sustainable agricultural development.


Keywords:  stubble retention       no tillage       productivity       soil carbon and nitrogen fractions       soil enzyme activity  
Online: 05 August 2025  
Fund: 

This research was funded by the National Key Research and Development Project of China (2022YFD1300803, 2024YFD1301101), the National Natural Science Foundation of China (42307430), Central Government Guiding Local Science and Technology Development Fund Project (24ZYQA049) and Gansu Province Graduate Innovation Funding Project (2025CXZX-059).

About author:  #Correspondence Yan Zhang, Tel: +86-8616609312899, E-mail: zhang_yan@lzu.edu.cn

Cite this article: 

Xiu Dong, Qian Yang, Yuying Shen, Tongtong Guan, Dong An, Yan Zhang. 2025. No tillage and stubble retention drive long-term productivity of forage-crop rotation system in the Loess Plateau by boosting soil nutrients. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.08.007

Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z, Yang G H. 2018. Changes in soil enzymes soil properties and maize crop productivity under wheat straw mulching in Guanzhong China. Soil and Tillage Research, 182, 94–102. 

Blair G, Lefroy R D B, Lisle L. 1995. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459–1466.

Bongiorno G, Bünemann E K, Oguejiofor C U, Meier J, Gort G, Comans R, Mäder P, Brussaard L, Goede R. 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50.

Bolinder M A, Angers D A, Dubuc J P. 1997. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agriculture, Ecosystems & Environment, 63, 61–66.

Borrelli P, Robinson D A, Fleischer L R, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Oost K V, Montanarella L, Panagos P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 2013.

Burns R G, Deforest J L, Marxsen J, Sinsabaugh, R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234.

Chu J C, Wang L H, Jia R, Zhou J, Zang H D, Wang J H, Yang Y D, Jiang Y, Wang Y X, Peixoto L, Zeng Z H. 2024. Straw returning with no-tillage alleviates microbial metabolic carbon limitation and improves soil multifunctionality in the northeast plain. Land Degradation & Development, 35, 5149–5161.

Ellert B, Bettany J. 1995. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Canadian Journal of Soil Science, 75, 529–538.

Fanin N, Mooshammer M, Sauvadet M, Meng C, Alvarez G, Bernard L, Bertrand I, Blagodatskaya E, Bon L, Fontaine., Niu S L, Lashermes G, Maxwell T L, Weintraub M N, Wingate L, Moorhead D, Nottingham A T. 2022. Soil enzymes in response to climate warming: Mechanisms and feedbacks. Functional Ecology, 36, 1378–1395.

Ferraro D O, Ghersa C M. 2007. Quantifying the crop management influence on arable soil condition in the Inland Pampa (Argentina). Geoderma, 141,43–52.

Flerchinger G N, Sauer T J, Aiken R A. 2003. Effects of crop residue cover and architecture on heat and water transfer at the soil surface. Geoderma, 116, 217–233.

Hillel D. 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, Waltham.

Jiang F H, Xue X W, Zhang L Y, Zuo Y Y, Zhang H, Zheng W, Bian L W, Hu L L, Hao C L, Du J H, Ci Y H, Cheng R B, Dawa C, Biswas M, Islam M U, Meng F S, Peng X H. 2024. Soil wind erosion, nutrients, and crop yield response to conservation tillage in North China: A field study in a semi-arid and wind erosion region after 9 years. Field Crops Research, 316, 109508.

Jones D L, Nguyen C, Finlay R D. 2009. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321, 5–33.

Kan Z R, Liu Q Y, He C, Jing Z H, Virk A L, Qi J Y, Zhao X, Zhang H L. 2020. Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain. Field Crops Research, 249, 107760.

Kan Z R, Liu W X, Liu W S, Lal R, Dang Y P, Zhao X, Zhang H L. 2022. Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Global Change Biology, 28, 693–710.

Knapp S, van der Heijden M G A. 2018. A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9, 3632.

Lai X F, Shen Y Y, Wang Z K, Ma J Y, Yang X L, Ma L S. 2022. Impact of precipitation variation on summer forage crop productivity and precipitation use efficiency in a semi-arid environment. European Journal of Agronomy, 141, 126616.

Lee J, Hopmans J W, Rolston, D E, Baer S G, Six, J. 2009. Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134, 251–256.

Li G R, Tang X Q, Hou Q M, Li T, Xie H X, Lu Z Q, Zhang T S, Liao Y C, Wen X X. 2023a. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: a global meta-analysis. Agriculture, Ecosystems & Environment, 342, 108231.

Li H Y, Zhang Y H, Sun Y G, Liu P Z, Zhang Q, Wang X L, Wang R, Li J. 2023b. Long-term effects of optimized fertilization tillage and crop rotation on soil fertility crop yield and economic profit on the Loess Plateau. European Journal of Agronomy, 143, 126731.

Li S, Zhang S R, Pu Y L, Li T, Xu X X, Jia Y X, Deng O P, Gong G S. 2016. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 155, 289–297.

Li Z, Yang X, Cui S, Yang Q, Yang X L, Li J C, Shen Y Y. 2018. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau a long-term imperative. Field Crops Research, 222, 164–179.

Lin B J, Li R C, Liu K C, Oladele O P, Xu Z Y, Lal R, Zhao X, Zhang H L. 2023. Management-induced changes in soil organic carbon and related crop yield dynamics in China's cropland. Global Change Biology, 29, 3575–3590.

Liu C Y, Feng X M, Xu Y, Kumar A, Yan Z J, Zhou J, Yang Y D, Peixoto L, Zeng Z H, Zang H D. 2023. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agronomy for Sustainable Development, 43, 64.

Ma Y, Woolf D, Fan M, Qiao L, Li R, Lehmann J. 2023. Global crop production increase by soil organic carbon. Nature Geoscience, 16, 1159–1165.

Marx M C, Wood M, Jarvis S C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 33, 1633–1640.

Mondal S, Chakraborty D J G. 2022. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma, 405, 115443.

Nie J W, Wang X Q, Ma S T, Zhang K, Zhang X Q, Zhao J, Zang H D, Yang Y D, Zeng Z H. 2022. Evaluation of crop productivity water and nitrogen use and carbon footprint of summer peanut-winter wheat cropping systems in the North China Plain. Food and Energy Security, 11, e401.

Page A L, Miller R H, Kenney D R. 1982. Methods of Soil Analysis. In: Part 2: Chemical and Microbiological Properties. Agronomy Monographs. American Society of Agronomy, Madision, pp. 542–610.

Qin W F, Niu L L, You Y L, Cui S, Chen C, Li Z. 2024a. Effects of conservation tillage and straw mulching on crop yield, water use efficiency, carbon sequestration and economic benefits in the Loess Plateau region of China: A meta-analysis. Soil and Tillage Research, 238, 106025.

Qin J J, Chen N, Scriber K E, Liu J B, Wang Z Q, Yang K J, Yang H Q, Liu F H, Ding Y Y, Latif J, Jia H Z. 2024b. Carbon emissions and priming effects derived from crop residues and their responses to nitrogen inputs. Global Change Biology, 30, e17115.

Seitz S, Goebes P, Puerta V L, Pereira E I P, Wittwer R, Six J, van der Heijden M G A, Scholten T. 2018. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, 39, 4.

Six J, Elliott E T, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32, 2099–2103.

Sun S A, Zhu B, Zhang Y W, Li M Y, Meng F Q. 2021. Contributions of wheat and maize growth to soil carbon input and output. Journal of Agro-Environment Science, 40, 2257–2265. (in Chinese)

Trap J, Riah W, Akpa-Vinceslas M, Bailleul C, Laval K, Trinsoutrot-Gattin I. 2012. Improved effectiveness and efficiency in measuring soil enzymes as universal soil quality indicators using microplate fluorimetry. Soil Biology and Biochemistry, 45, 98–101.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707.

Vendig I, Guzman A, Cerda G D L, Esquivel K, Mayer A C, Ponisio L, Bowles T M. 2023. Quantifying direct yield benefits of soil carbon increases from cover cropping. Nature Sustainability, 6, 1125–1134.

Wahdan S F M, Ji L, Schädler M, Wu Y T, Sansupa C, Tanunchai B, Buscot F, Purahong W. 2023. Future climate conditions accelerate wheat straw decomposition alongside altered microbial community composition, assembly patterns, and interaction networks. The ISME Journal, 17, 238–251.

Wang G S, Gao Q., Yang Y F, Hobbie S E, Reich P B, Zhou J Z. 2022. Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling. Global Change Biology, 28,1935–1950.

Wang Y L, Wu P N, Mei F L, Ling Y, Qiao Y B, Liu C S, Leghari S J, Guan X K, Wang T C. 2021. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management, 288, 112391.

Weishaar J L, Aiken G R, Bergamaschi B A, Fram M S, Fujii R, Mopper K. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37, 4702–4708.

Wen L S, Peng Y, Zhou Y R, Cai G, Lin Y Y, Li B Y. 2023. Effects of conservation tillage on soil enzyme activities of global cultivated land: A meta-analysis. Journal of Environmental Management, 345, 118904.

Wen X, Deng X Z. 2020. Current soil erosion assessment in the Loess Plateau of China: a mini-review. Journal of Cleaner Production, 276, 123091.

Wu G, Ling J, Zhao D Q, Liu Z X, Xu Y P, Kuzyakov Y, Marsden K, Wen Y, Zhou S L. 2023. Straw return counteracts the negative effects of warming on microbial community and soil multifunctionality. Agriculture, Ecosystems & Environment, 352, 108508.

Xiao L G, Zhao R Q, Kuhn N J. 2019. Straw mulching is more important than no tillage in yield improvement on the Chinese Loess Plateau. Soil and Tillage Research, 194, 104314.

Xu R X, Pu Z, Han S X, Yu H Q, Guo C, Huang Q S, Zhang Y J. 2024. Managing forage for grain: Strategies and mechanisms for enhancing forage production to ensure feed grain security. Journal of Integrative Agriculture24, 20252034.

Yang X, Zheng L N, Yang Q, Wang Z K, Cui S, Shen Y Y. 2018a. Modelling the effects of conservation tillage on crop water productivity soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. Agricultural Systems, 166, 111–123.

Yang Y, Zou J, Huang W H, Olesen J E, Li W J, Rees R M, Harrison M T, Feng B, Feng Y P, Chen F, Yin X G. 2024. Drivers of soybean-based rotations synergistically increase crop productivity and reduce GHG emissions. Agriculture, Ecosystems & Environment, 372, 109094.

Yin W, Fan Z L, Hu F L, Fan H, He W, Zhao C, Yu A Z, Chai Q. 2023. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions. Journal of Integrative Agriculture, 22, 3416–3429.

Zhang Q, Wang S L, Sun Y G, Zhang Y H, Li H Y, Liu P Z, Wang X L, Wang R, Li J. 2022b. Conservation tillage improves soil water storage, spring maize (Zea mays L.) yield and WUE in two types of seasonal rainfall distributions. Soil and Tillage Research, 215, 105237.

Zhang Y, Dong X, Yang X L, Munyampirwa T, Shen Y Y. 2022a. The lagging movement of soil nitrate in comparison to that of soil water in the 500-cm soil profile. Agriculture, Ecosystems & Environment, 326, 107811.

Zhao J, Chen J, Beillouin D, Lambers H, Yang Y D, Smith P, Zeng Z H, Olesen J E, Zang H D. 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications, 13, 4926.

Zhao J, Yang Y D, Zhang K, Jeong J, Zeng Z H, Zang H D. 2020. Does crop rotation yield more in China? a meta-analysis. Field Crops Research, 245, 107659.

Zuccarini P, Sardans J, Asensio L, Peñuelas J. 2023. Altered activities of extracellular soil enzymes by the interacting global environmental changes. Global Change Biology, 29, 2067–2091. 

No related articles found!
No Suggested Reading articles found!