Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Roles of dandelions alone or in combination with lactic acid bacteria on improving aerobic stability and mitigating in vitro greenhouse gas emissions in whole-plant corn silage

Linna Guo1#, Min Zhang1, Hao Dang1, Meiping He1, Meng Han1, Shuyang Zhang1, Wenke Fan1, Di Jiang2, Xiaojing Liu3, Yaoming Cui1, Liping Gan1, Junjun Guan1#

1 School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

2 College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

3 Animal Nutrition & Health, Kemin Industries Inc., Zhuhai 519040, China

 Highlights 

l High quality silage could be obtained by dandelions or combination addition.

l Dandelions or combination facilitated microbial competition in aerobic fermentation.

l Dandelions or combination inhibited Acetobacter fabarum that related to spoilage. 

l Dandelions effectively mitigated in vitro CH4 and CO2 emissions.

IVDMD was promoted with dandelions addition.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

(目的)为减少畜牧业生产中青贮饲料的有氧变质以及瘤胃温室气体排放。(方法)本研究探讨了单独使用蒲公英以及蒲公英与植物乳杆菌和布氏乳杆菌(LAB)联合使用对全株玉米进行180天厌氧发酵和4天有氧发酵后的发酵品质、细菌群落和真菌群落的影响,评估了厌氧发酵后全株玉米的体外干物质消化率(IVDMD)和产气量。(结果)结果表明,蒲公英单独使用或与 LAB 联合使用均能有效改善发酵品质,厌氧发酵后降低了氨态氮浓度(22.72% - 25.99%),抑制酵母和霉菌的繁殖,从而提高有氧稳定性。值得注意的是,有氧暴露后细菌群落的变化比真菌群落的变化更为显著。相关性分析结果发现,添加蒲公英或其与LAB联合使用均降低了醋菌属的一种腐败微生物——可可豆醋杆菌的丰度,并且促进了微生物群落的竞争关系,从而有助于提高有氧稳定性。此外,蒲公英添加分别使甲烷和二氧化碳的排放量减少了14.88%13.73%,使IVDMD提高了4.46%(结论)总的来说,单独使用蒲公英或与LAB结合使用,均可提高全株玉米厌氧发酵后有氧稳定性,这一过程与细菌群落和真菌群落之间的相互作用有关,并有助于通过减少瘤胃甲烷和二氧化碳排放来实现清洁生产。(创新性)本研究首次将蒲公英与特定乳酸菌复配作为青贮添加剂,通过调控微生物群落同步提升全株玉米发酵品质与有氧稳定性,并显著降低体外瘤胃温室气体排放,为开发兼具抑制好氧变质和减少温室气体的环保型青贮技术提供了新策略。



Abstract  

Reducing aerobic spoilage and rumen greenhouse gas emissions from anaerobically fermented feeds remains critical challenges in energy saving and environmental protection of animal husbandry. This study investigated the effects of dandelions, both alone and combinated with Lactiplantibacillus plantarum and Lentilactobacillus buchneri (LAB) on fermentation quality, bacteriome and mycobiome after 180 d of anaerobic and 4 d of aerobic fermentation of whole-plant corn. In vitro dry matter digestion (IVDMD) and gas production from anaerobically fermented whole-plant corn were also assessed. The results demonstrated that dandelions, either alone or combinated with LAB, effectively improved fermentation quality by reducing NH3-N concentrations (22.72-25.99%) after anaerobic fermentation, decreasing the proliferation of yeast and molds to enhance the aerobic stability. Notably, the changes in the bacteriome were more pronounced than those in the mycobiome after aerobic exposure. The addition of dandelions or the combination reduced Acetobacter fabarum abundance, a member of the Acetobacter that was spoilage-induced microbe indicated by correlation analysis. Besides, these treatments facilitated competition relations of microbiome which contributeto the enhanced aerobic stabilityFurthermore, dandelions reduced CH4 and CO2 emissions by 14.88 and 13.73%, respectively, and also positively influencing IVDMD by 4.46%. Collectively, dandelion alone or combined with LAB are promising strategies to improve the aerobic stability of anaerobically fermented whole-plant corn, a process linked to the interactions between the bacteriome and mycobiome, and to contribute to clean production by reducing rumen CH4 and CO2 emissions

Keywords:  dandelions       whole-plant corn              aerobic stability              Acetobacter fabarum                    rumen greenhouse gas  
Online: 05 August 2025  
Fund: This work was supported by the Henan Provincial Science and Technology Research Project (242102111014), the Key Scientific Research Project of Colleges and Universities in Henan Province (23A230003), the Cultivation Program for young key teachers in Henan University of Technology (21421296) and the Scientific Research Foundation for High-level talents in Henan Technology University (31401489).
About author:  #Correspondence Linna Guo, E-mail: linnam921@163.com; Junjun Guan, E-mail: junjunguan@163.com

Cite this article: 

Linna Guo, Min Zhang, Hao Dang, Meiping He, Meng Han, Shuyang Zhang, Wenke Fan, Di Jiang, Xiaojing Liu, Yaoming Cui, Liping Gan, Junjun Guan. 2025. Roles of dandelions alone or in combination with lactic acid bacteria on improving aerobic stability and mitigating in vitro greenhouse gas emissions in whole-plant corn silage. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.08.005

AOAC (Association of Official Analytical Chemists). 1990. Association of Official Analytical Chemists: Official Methods of Analysis. Association of Official Agricultural Chemists, Arlington.

Bai R, Li H, Chen S, Yuan X, Chen Y, Huang Y, Zhou Q, Guan H. 2024. Microbiome and response surface methodology analyses reveal Acetobacter pasteurianus as the core bacteria responsible for aerobic spoilage of corn silage (Zea mays) in hot and humid areas. Frontiers in Microbiology, 15, 1473238.

Broderick G A, Kang J H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64-75.

Cao J, Zhou H, Wang X, Wang Y, Li Y, Joseph S, Wang X, Sun M, Zhang K, Lin Y, Xu G. Ni K, Shang J, Yang F. 2024. Game changer for anaerobic fermentation of paper mulberry: Sucrose-loaded biochar enhancing microbial communities and lactic acid fermentation. Bioresource Technology, 414, 131552.

Cui X, Wang Z, Yan T, Chang S, Hou F. 2023. Modulation of feed digestibility, nitrogen metabolism, energy utilisation and serum biochemical indices by dietary Ligularia virgaurea supplementation in Tibetan sheep. Animal, 17, 100910.

Dolci P, Tabacco E, Cocolin L, Borreani G. 2011. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Applied and Environmental Microbiology. 77, 7499-7507.

Du Z, Sun L, Chen C, Lin J, Yang F, Cai Y. 2021. Exploring microbial community structure and metabolic gene clusters during silage fermentation of paper mulberry, a high-protein woody plant. Animal Feed Science and Technology, 275, 114766.

Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L. 2015. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33-40.

Fotsidie H, Mekonnen T, Nono J, Ngaba M, Xu J, Ayemele A. 2025. Rumen microbiota for cattle performance and greenhouse gas mitigation across the world. Journal of Cleaner Production, 304, 114142.

Guan H, Ran Q, Li H, Zhang X. 2021. Succession of microbial communities of corn silage inoculated with heterofermentative lactic acid bacteria from ensiling to aerobic exposure. Fermentation, 7, 258.

Guan H, Shuai Y, Ran Q, Yan Y, Wang X, Li D, Cai Y, Zhang X. 2020. The microbiome and metabolome of Napier grass silages prepared with screened lactic acid bacteria during ensiling and aerobic exposure. Animal Feed Science and Technology, 269, 114673.

Guo G, Shen C, Liu Q, Zhang S, Shao T, Wang C, Wang Y, Xu Q, Huo W. 2020. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture19, 838-847.

Guo L, Wang X, Chen H, Li X, Xiong Y, Zhou H, Xu G, Yang F, Ni K. 2023a. Exploring the fermentation quality, bacterial community and metabolites of alfalfa ensiled with mugwort residues and Lactiplantibacillus pentosus. Chemical and Biological Technologies in Agriculture, 10, 107.

Guo L, Wang Y, Wang X, Li X, Xiong Y, Lin Y, Ni K, Yang F. 2023b. Dynamic fermentation quality and bacterial community structure of paper mulberry silage from three regions of China, 10, 51.

Harvey Z H, Snider M J. 2014. Draft genome sequence of the nicotinate-metabolizing soil bacterium Bacillus niacini DSM 2923. Genome Announcements, 2, e01251-14.

Hristov A N, Oh J, Giallongo F, Frederick T W, Harper M T, Weeks H L, Branco A F, Moate P J, Deighton M H, Williams S R O, Kindermann M, Duval S. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America, 112, 10663–10668.

Karademir Andersson A, Cohn M. 2017. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast, 34, 95-109.

Kim H, Jung E, Lee H G, Kim B, Cho S, Lee S, Kwon I, Seo J. 2018. Essential oil mixture on rumen fermentation and microbial community - an in vitro study. Asian-Australasian Journal of Animal Science, 32, 808-814.

Kung L, Shaver R D, Grant R J, Schmidt R J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101, 4020-4033.

Li X, Chen F, Xu J, Guo L, Xiong Y, Lin Y, Ni K, Yang F. 2022a. Exploring the addition of herbal residues on fermentation quality, bacterial communities, and ruminal greenhouse gas emissions of paper mulberry silage. Frontiers in Microbiology, 12, 820011.

Li X, Chen F, Wang X, Xiong Y, Liu Z, Lin Y, Ni K, Yang F. 2022b. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresource Technology, 360, 127429.

Li J, Meng Q, Xing J, Wang C, Song C, Ma D, Shan A. 2022c. Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation. Journal of Cleaner Production, 348, 131366.

Li X, Chen F, Xiong Y, Guo L, Xu J, Lin Y, Ni K, Yang F. 2022d. Perilla frutescens as potential antimicrobial modifier to against forage oat silage spoilage. Frontiers in Microbiology, 13, 1053933.

Li J, Meng Q, Wang C, Song C, Lyu Y, Li Ji, Shan A. 2023. The interaction between temperature and citric acid treatment in the anaerobic fermentation of Chinese cabbage waste. ournal of Cleaner Production, 383, 135502.

Li M, Dai B, Tang Y, Lei L, Li N, Liu C, Ge T, Zhang L, Xu Y, Hu Y, Li P, Zhang Y, Yuan J, Li X. 2019. Altered bacterial-fungal interkingdom networks in the guts of ankylosing spondylitis patients. mSystems, 4, e00176-18.

Li Y, Nishino N. 2011. Effects of inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri on fermentation, aerobic stability and microbial communities in whole crop corn silage. Grassland and Science, 57, 184-191.

Li Z, Usman S, Zhang J, Zhang Y, Su R, Chen H, Li Q, Jia M, Amole T A , Guo X. 2024. Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation, microbiota, and CH4 emissions. Journal of Animal Science and Biotechnology, 15, 107.

Liang Y, Duan H, Zhang P, Han H, Gao F, Li Y, Xu Z. 2020. Extraction and isolation of the active ingredients of dandelion and its antifungal activity against Candida albicans. Molecular Medicine Reports, 21, 229-239.

Liu Q H, Shao T, Zhang J G. 2013. Determination of aerobic deterioration of corn stalk silage caused by aerobic bacteria. Animal Feed Science and Technology, 183, 124-131.

Merry R J, Davies D R. 1999. Propionibacteria and their role in the biological control of aerobic spoilage in silage. Le Lait, 79, 149-164.

Muck R E. 2012. Microbiology of ensiling. XVI International Silage Conference, Finland, pp. 75-86.

Muck R E, Nadeau E M G, McAllister T A , Contreras-Govea F E, Santos M C, Kung L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101, 3980-4000.

Murphy R P. 1958. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture, 9, 714-717.

Nagaraja T G, Titgemeyer E C. 2007. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. Journal of Dairy Science, 90, E17–E38.

Nazar M, Wang S, Zhao J, Dong Z, Li J, Kaka N A, Shao T. 2021. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile sudan grass. World Journal of Microbiology and Biotechnology, 37, 27.

Oliveira A S, Weinberg Z G, Ogunade I M, Cervantes A A P, Arriola K G, Jiang Y, Kim D, Li X, Gonçalves M C M, Vyas D, Adesogan A T. 2017. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 100, 4587-4603.

Oude Elferinck S J, Driehuis F, Becker P M, Gottschal J C, Faber F, Spoelstra S F. 2001. The presence of Acetobacter sp. in ensiled forage crops and ensiled industrial byproducts. Mededelingen, 66, 427-430.

Pahlow G, Muck R E, Driehuis F, Elferink S J W H O, Spoelstra S F. 2015. Microbiology of Ensiling. In: Buxton D R, Muck R E, Harrison J H, eds., Agronomy Monographs. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA. pp. 31–93.

Raspor P, Goranovic D. 2008. Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28, 101-124. 

Tian J, Tian R, Wu J, Huang L, Zhang J. 2025. Gas production characteristics of oats and tritical silages and techniques for reducing gas emissions. Journal of Integrative Agriculture, 24, 1246-1258. 

Santos M C, Golt C, Joerger R D, Mechor G D, Mourão G B, Kung L. 2017. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods. Journal of Dairy Science, 100, 1151-1160.

Sousa M J, Rodrigues F, Coôrte-Real M, Leão C. 1998. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii, Microbiology. 144, 665-670.

Tabacco E, Piano S, Revello-Chion A, Borreani G. 2011. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. Journal of Dairy Science, 94, 5589-5598.

Ugbogu E A, Elghandour M M M Y, Ikpeazu V O, Buendia G R, Molina O M, Arunsi U O, Emmanuel O, Salem A Z M. 2019. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. Journal of Cleaner Production, 213, 915-925.

Vaughan Martini A, Martini A. 2011. Saccharomyces Meyen ex Reess (1870). In: Cletus P K, Jack W F, Teun B, eds., in The Yeasts, Elsevier, pp. 733–746.

Van Soest P J, Robertson J B, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 35833597.

Wang H, Hao W, Ning T, Zheng M, Xu C. 2018. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage. Asian-Australasian Journal of Animal Science, 31, 198-207.

Wang W, Tan Z, Gu L, Ma H, Wang Z, Wang L, Wu G, Qin G, Wang Y, Pang H. 2022a. Variation of microbial community and fermentation quality in corn silage treated with lactic acid bacteria and Artemisia argyi during aerobic exposure. Toxins, 14, 349.

Wu S, Huang P, Zhang C, Zhou W, Chen X, Zhang Q. 2024. Novel strategy to understand the aerobic deterioration of corn silage and the influence of Neolamarckia cadamba essential oil by multi-omics analysis. Chemical Engineering Journal, 482, 148715.

Wu S, Xu C, Liu J, Liu C, Qiao J. 2021. Vertical and horizontal quorum-sensing-based multicellular communications. Trends in Microbiology, 29, 1130-1142.

Xia G, Zhang M, Huang Y, Chen C, Yang F, Hao J. 2024. Heat-resistant lactic acid bacteria inoculants modulated the bacterial microbiota and fermentation quality of whole plant maize silage after long-term storage in the subtropical area. Animal Feed Science and Technology, 310, 115931.

Yang Y, Chen Z. 2023. Mechanism of herbal medicine and food dandelion effects may be related to RNA or DNA regulation: A Review. Chinese Medicine, 14, 79-93.

Zong C, Tang L, Shao T, Xiao Y, Huang Z, Jiang W, Zhu J, Dong Z, Li M, Liu Q. 2024. Klebsiella as an α-tocopherol source facilitating Lactobacillus plantarum fermentation in rice straw silage. Journal of Integrative Agriculture23, 4186-4202.

Zhang T, Li H, Ma S, Cao J, Liao H, Huang Q, Chen W. 2023. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Applied and Environmental Microbiology, 89, e00605-23.

Zhao J, Jing Z, Yin X, Wang S, Li J, Dong Z, Shao T. 2024. Effects of cutting height and storage length on fermentation characteristics, microbial community, co-occurrence networks, potential functionality and pathogenic risk of fermented sweet sorghum stem. LWT, 196, 115828.

Zhou W, Pian R, Yang F, Chen X, Zhang Q. 2021. The sustainable mitigation of ruminal methane and carbon dioxide emissions by co-ensiling corn stalk with Neolamarckia cadamba leaves for cleaner livestock production. Journal of Cleaner Production, 311, 127680.

Zhu Q, Shi G, Gu J, Du J, Guo J, Wu Y, Yang S, Jiang J. 2024. Impact of lactic acid bacterial fermentation on the chemical composition, antioxidant capacities and flavor properties of dandelion. Food Bioscience, 62, 105313. 

No related articles found!
No Suggested Reading articles found!