Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Functions and regulations of RNA-binding proteins in skeletal muscle development and meat production

Xiaoqin Liu1, 2, 3, 4, Gardner Graham2, Zhonglin Tang1, 3, 4, Calnan Honor2#, Yalan Yang1, 3, 4#

1 Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China

2 College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150 Australia

3 Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

4 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

 Highlights 

1. Systematic review the functions and mechanisms of RNA-binding proteins in skeletal muscle development.

2. Explore the potential breeding value of RNA-binding proteins in genetic improvement of meat production traits in livestock and poultry.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

RNA结合蛋白(RBPs)在基因表达的转录及转录后调控中发挥重要作用。近年来,大量研究表明,RBPs是肌生成过程中的关键调控因子,为深入解析骨骼肌发育与生长的分子机制奠定了重要基础。然而,尽管RBPs在畜禽产肉性状调控方面展现出潜在的应用价值,但其在畜禽中的具体功能和作用机制仍需进一步研究。本综述系统总结了RBPs的基本特性,包括其两大主要分类方法、高度进化保守性以及组织特异性。随后,详细阐述了RBPs在骨骼肌生成中的功能与调控机制。这些RBPs可通过参与细胞核内的可变剪接和多聚腺苷酸化实现转录后调控;转运至胞质后,则通过介导胞质多聚腺苷酸化、维持mRNA稳定性、充当非编码RNA分子海绵或调控翻译效率等多种方式参与骨骼肌生成的调控。此外,部分RBPs还可通过动态核质穿梭和液-液相分离进一步调控骨骼肌生成。本文以hnRNPs、MBNL和RBFOX等三个家族为例,深入剖析了RBPs在骨骼肌生成中的作用,揭示其在肌细胞增殖、分化和融合等过程中的关键角色。最后,综述了11个对家畜产量量和肌纤维组成具有潜在调控作用的RBPs。其中,RPS27L基因与猪体重呈负相关,其余10个RNA结合蛋白分别在体外实验或小鼠模型中显示出对产肉性状的影响。此外,基于最新的PigGTEx数据库分析发现,包括IGF2BP2、METTL3在内的更多RBPs被预测与产肉性状显著相关。尽管已有综述探讨了RBPs在骨骼肌中的作用,但本文首次聚焦于RBPs在家畜瘦肉产量和肌纤维组成的调控,并探讨其在产肉性状改良中的潜在育种价值,旨在为改善家畜产肉性状的遗传改良提供更为全面和坚实的理论依据。

 



Abstract  

RNA-binding proteins (RBPs) predominantly regulate gene expression at both the transcription and post-transcriptional levels through multiple mechanisms such as alternative RNA splicing and alternative polyadenylation. Increasing evidence indicates that RBPs are crucial regulators of myogenesis, providing a foundation for understanding the development and growth of skeletal muscle. However, the role of RBPs in regulating meat production traits in livestock remains underexplored, despite its potential benefits to the meat industry. In this review, we summarize the fundamental characteristics of RBPs, along with their functions and regulatory mechanisms in skeletal myogenesis. We also highlight the potential of RBPs on meat production traits, focusing on lean meat yield and myofiber composition in livestock. Our aim is to deepen the understanding of how RBPs govern skeletal muscle development, contributing to the improvement of meat production traits in livestock.

Keywords:  RNA-binding proteins       skeletal myogenesis       meat production       lean meat yield       myofiber composition  
Online: 03 June 2025  
Fund: 

This work was supported by the National Key Scientific Research Project (2023YFF1001100), the National Natural Science Foundation of China (U23A20229 and 32172697) and Agricultural Science and Technology Innovation Program (CAAS-ZDRW202406). We thank all the members in the Tang lab for their great suggestions in the work.

About author:  Xiaoqin Liu, E-mail: liuxiaoqin112@163.com. #Correspondence Calnan Honor, E-mail: honor.calnan@murdoch.edu.au; Yalan Yang, E-mail: yangyalan@caas.cn.

Cite this article: 

Xiaoqin Liu, Gardner Graham, Zhonglin Tang, Calnan Honor, Yalan Yang. 2025. Functions and regulations of RNA-binding proteins in skeletal muscle development and meat production. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.006

Abbadi D, Yang M, Chenette DM, Andrews JJ,  Schneider RJ. 2019. Muscle development and regeneration controlled by AUF1-mediated stage-specific degradation of fate-determining checkpoint mRNAs. Proceedings of the National Academy of Sciences,116, 11285-11290.

Apponi LH, Corbett AH,  Pavlath GK. 2011. RNA-binding proteins and gene regulation in myogenesis. Trends in Pharmacological Sciences, 32, 652-658.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS,  Eppig JT. 2000. Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25-29.

Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ, Goodwin M, Zhang C, Sobczak K,  Thornton CA. 2014. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Molecular Cell, 56, 311-322.

Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume A-M, Schwarzl T, Curk T, Foehr S,  Huber W. 2015. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 6, 10127.

Berger DS, Moyer M, Kliment GM, Van Lunteren E,  Ladd AN. 2011. Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype. PLoS One, 6, e19274.

Blackshear PJ,  Perera L. 2014. Phylogenetic distribution and evolution of the linked RNA-binding and NOT1-binding domains in the tristetraprolin family of tandem CCCH zinc finger proteins. Journal of Interferon & Cytokine Research, 34, 297-306.

Bland CS, Wang ET, Vu A, David MP, Castle JC, Johnson JM, Burge CB,  Cooper TA. 2010. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Research, 38, 7651-7664.

Brinegar AE,  Cooper TA. 2016. Roles for RNA-binding proteins in development and disease. Brain Research, 1647, 1-8.

Brook M, Smith JW,  Gray NK. 2009. The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction, 137, 595.

Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D,  Relaix F. 2003. The formation of skeletal muscle: from somite to limb. Journal of Anatomy, 202, 59-68.

Bye-a-Jee H, Pugazhendhi D, Woodhouse S, Brien P, Watson R, Turner M,  Pell J. 2018. The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skeletal Muscle, 8, 1-12.

Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J, Ha M, Kim YK,  Kim VN. 2012. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell, 151, 765-777.

Choi Y,  Kim B. 2009. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science122, 105-118.

Cook KB, Hilal K, Khalid Z, Quaid M,  Hughes TR. 2011. RBPDB: a database of RNA-binding specificities. Nucleic Acids Research, 39, D301-D308.

Du X,  Xiao R. 2020. An emerging role of chromatin-interacting RNA-binding proteins in transcription regulation. Essays in Biochemistry, 64, 907-918.

Espinoza-Lewis RA, Yang Q, Liu J, Huang Z-P, Hu X, Chen D,  Wang D-Z. 2017. Poly (C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts. Journal of Biological Chemistry, 292, 9540-9550.

Fang L, et al. 2025. The Farm Animal Genotype-Tissue Expression (FarmGTEx) Project. Nature Genetics, 57, 786-796.

Fiedler I. 1983. Postnatal growth of muscle fibres in pigs. Tagungsber. Akad. Landwirtschaftswissenschaften, Berlin, Germany, 209, 87-94.

Frese KS, Meder B, Keller A, Just S, Haas J, Vogel B, Fischer S, Backes C, Matzas M,  Köhler D. 2015. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish. Journal of Cell Science, 128, 3030-3040.

Gardner G, Pethick D,  Anderson F. 2019. The importance of Lean Meat Yield: The value it creates in the supply chain and the importance of better feedback to farmers. Proceeding of the LambEx 2012 Conference. 2012.

Gerstberger S, Hafner M,  Tuschl T. 2014. A census of human RNA-binding proteins. Nature Reviews Genetics, 15, 829-845.

Greová K, Raek T, Martinek V, Cechak D, Svobodová R,  Alexiou P. 2023. RBP-Tar – a searchable database for experimental RBP binding sites. F1000Research, 25, 755.

Grifone R, Saquet A, Desgres M, Sangiorgi C, Gargano C, Li Z, Coletti D,  Shi D-L. 2021. Rbm24 displays dynamic functions required for myogenic differentiation during muscle regeneration. Scientific Reports, 11, 9423.

Grifone R, Xie X, Bourgeois A, Saquet A, Duprez D,  Shi D-L. 2014. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development. Mechanisms of Development, 134, 1-15.

Han G, Yang P, Zhang Y, Li Q, Fan X, Chen R, Yan C, Zeng M, Yang Y,  Tang Z. 2025. PIGOME: An integrated and comprehensive multi-omics database for pig functional genomics studies. Genomics, Proteomics & Bioinformatics23, qzaf016. 

Hausburg MA, Doles JD, Clement SL, Cadwallader AB, Hall MN, Blackshear PJ, Lykke-Andersen J,  Olwin BB. 2015. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. eLife, 4, e03390.

Hettinger ZR, Confides AL, Vanderklish PW,  Dupont-Versteegden EE. 2023. The transcript interactome of skeletal muscle RNA binding protein motif 3 (RBM3). Physiological Reports, 11, e15596.

Hindi SM, Shin J, Gallot YS, Straughn AR, Simionescu-Bankston A, Hindi L, Xiong G, Friedland RP,  Kumar A. 2017. MyD88 promotes myoblast fusion in a cell-autonomous manner. Nature Communications, 8, 1624.

Holt I, Jacquemin V, Fardaei M, Sewry CA, Butler-Browne GS, Furling D, Brook JD,  Morris GE. 2009. Muscleblind-like proteins: similarities and differences in normal and myotonic dystrophy muscle. The American Journal of Pathology, 174, 216-227.

Hosokawa M, Takeuchi A, Tanihata J, Iida K, Takeda Si,  Hagiwara M. 2019. Loss of RNA-binding protein Sfpq causes long-gene transcriptopathy in skeletal muscle and severe muscle mass reduction with metabolic myopathy. Iscience, 13, 229-242.

Iakova P, Wang GL, Timchenko L, Michalak M, Pereira-Smith OM, Smith JR,  Timchenko NA. 2004. Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. The EMBO journal, 23, 406-417.

Inbal P, Idit K, Manuel A, Melissa C, Yael MG. 2014. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Research, 42, W361-W367.

Ji X, Zhou Y, Pandit S, Huang J, Li H, Lin CY, Xiao R, Burge CB,  Fu X-D. 2013. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell, 153, 855-868.

Jian-You L, Bing Y, Yu-Chan Z, Xiao-Juan W, Yushan Y, Jing-Wen P, Zhi-Zhi Y, Jie-Hua H, Yin Z,  Kaishun H. 2019. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs). Nucleic Acids Research, 48(D1), 307-313.

Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV,  Olwin BB. 2005. The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell. The Journal of Cell Biology, 169, 105-116.

Lee K-S, Smith K, Amieux PS, Wang EH. 2008. MBNL3/CHCR prevents myogenic differentiation by inhibiting MyoD-dependent gene transcription. Differentiation, 76, 299-309.

Li F, Yan C, Yao Y, Yang Y, Liu Y, Fan D, Zhao J,  Tang Z. 2024. Transcription Factor SATB2 Regulates Skeletal Muscle Cell Proliferation and Migration via HDAC4 in Pigs. Genes, 15, 65.

Li J, Pei Y, Zhou R, Tang Z, Yang Y. 2021. Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 17, 1682.

Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H,  Zhang L. 2023. Research progress on the structural and functional roles of hnRNPs in muscle development. Biomolecules, 13, 1434.

Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE,  Wang X. 2008. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 456, 464-469.

Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS,  Thornton CA. 2006. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Human Molecular Genetics, 15, 2087-2097.

Liu T-Y, Chen Y-C, Jong Y-J, Tsai H-J, Lee C-C, Chang Y-S, Chang J-G,  Chang Y-F. 2017. Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biology, 7, 160303.

Liu X, Fan X, Yan J, Zhang L, Wang L, Calnan H, Yang Y, Gardner G, Zhou R,  Tang Z. 2024. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.05.005

Lunde BM, Moore C,  Varani G. 2007. RNA-binding proteins: modular design for efficient function. Nature reviews Molecular Cell Biology, 8, 479-490.

Machuca-Tzili LE, Buxton S, Thorpe A, Timson CM, Wigmore P, Luther PK,  Brook JD. 2011. Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Disease Models & Mechanisms, 4, 381-392.

Macias S, Plass M, Stajuda A, Michlewski G, Eyras E,  Cáceres JF. 2012. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nature Structural & Molecular Biology, 19, 760-766.

Maiwen CH, Jansen RE, Elsa W,  Sven D. 2020. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Research, 49(D1), D425-D426.

Maltin C, Sinclair K, Warriss P, Grant C, Porter A, Delday MI,  Warkup C. 1998. The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fibre type characteristics and eating quality of bull beef from suckled calves. Animal Science, 66, 341-348.

Maltin C, Warkup C, Matthews K, Grant C, Porter A,  Delday MI. 1997. Pig muscle fibre characteristics as a source of variation in eating quality. Meat Science, 47, 237-248.

Mao F, Xiao L, Li X, Liang J, Teng H, Cai W,  Sun ZS. 2016. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Research, 44, D154-D163.

Merkin J, Russell C, Chen P,  Burge CB. 2012. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science, 338, 1593-1599.

Monferrer L,  Artero R. 2006. An interspecific functional complementation test in Drosophila for introductory genetics laboratory courses. Journal of Heredity, 97, 67-73.

Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U,  Spletter ML. 2022. Rbfox1 is required for myofibril development and maintaining fiber type–specific isoform expression in Drosophila muscles. Life Science Alliance, 5, e202101342.

Nimmo M,  Snow D. 1983. The effect of ageing on skeletal muscle fibre characteristics in two inbred strains of mice. Journal of Physiology, 340, 24P-25P.

Panda AC, Abdelmohsen K, Yoon J-H, Martindale JL, Yang X, Curtis J, Mercken EM, Chenette DM, Zhang Y,  Schneider RJ. 2014. RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. Molecular and Cellular Biology, 34, 3106-3119.

Pascual M, Vicente M, Monferrer L,  Artero R. 2006. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation, 74, 65-80.

Regué L, Ji F, Flicker D, Kramer D, Pierce W, Davidoff T, Widrick JJ, Houstis N, Minichiello L,  Dai N. 2019. IMP2 increases mouse skeletal muscle mass and voluntary activity by enhancing autocrine insulin-like growth factor 2 production and optimizing muscle metabolism. Molecular and Cellular Biology, 39, e00528-18.

Rehfeldt C, Fiedler I, Dietl G,  Ender K. 2000. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, 66, 177-188.

Runfola V, Sebastian S, Dilworth FJ,  Gabellini D. 2015. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation. Journal of Cell Science, 128, 631-637.

Schiaffino S,  Reggiani C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiological Reviews, 76, 371-423.

Shi DL,  Grifone R. 2021. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Frontiers in Cell and Developmental Biology, 9, 738978.

Singh RK, Kolonin AM, Fiorotto ML,  Cooper TA. 2018. Rbfox splicing factors maintain skeletal muscle mass by regulating calpain3 and proteostasis. Cell Reports, 24, 197-208.

Singh RK, Xia Z, Bland CS, Kalsotra A, Scavuzzo MA, Curk T, Ule J, Li W,  Cooper TA. 2014. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis. Molecular Cell, 55, 592-603.

Siomi MC, Sato K, Pezic D,  Aravin AA. 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12, 246-258.

Squillace RM, Chenault DM,  Wang EH. 2002. Inhibition of muscle differentiation by the novel muscleblind-related protein CHCR. Developmental Biology, 250, 218-230.

Tan B, Zeng J, Meng F, Wang S, Xiao L, Zhao X, Hong L, Zheng E, Wu Z,  Li Z. 2022. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles. BMC Genomics, 23, 804.

Teng J, Gao Y, Yin H, Bai Z, Liu S, Zeng H, Pig GC, Bai L, Cai Z, Zhao B, Li X, Xu Z, Lin Q, Pan Z,et al. 2024. A compendium of genetic regulatory effects across pig tissues. Nature Genetics, 56, 112-123.

Thomas JD, Sznajder ŁJ, Bardhi O, Aslam FN, Anastasiadis ZP, Scotti MM, Nishino I, Nakamori M, Wang ET,  Swanson MS. 2017. Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Genes & Development, 31, 1122-1133.

Timchenko NA, Patel R, Iakova P, Cai Z-J, Quan L,  Timchenko LT. 2004. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. Journal of Biological Chemistry, 279, 13129-13139.

Van Pelt DW, Hettinger ZR,  Vanderklish PW. 2019. RNA-binding proteins: The next step in translating skeletal muscle adaptations? Journal of Applied Physiology, 127, 654-660.

Venables JP, Vignal E, Baghdiguian S, Fort P,  Tazi J. 2012. Tissue-specific alternative splicing of Tak1 is conserved in deuterostomes. Molecular Biology and Evolution, 29, 261-269.

Verbeke W, Pérez-Cueto FJ, De Barcellos MD, Krystallis A,  Grunert KG. 2010. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science, 84, 284-292.

Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein H-J,  Ender K. 2000. Growth-and breed-related changes of muscle fiber characteristics in cattle. journal of Animal Science, 78, 1485-1496.

Wei C, Xiao R, Chen L, Cui H, Zhou Y, Xue Y, Hu J, Zhou B, Tsutsui T,  Qiu J. 2016. RBFox2 binds nascent RNA to globally regulate polycomb complex 2 targeting in mammalian genomes. Molecular Cell, 62, 875-889.

Wells ML, Perera L,  Blackshear PJ. 2017. An ancient family of RNA-binding proteins: still important! Trends in Biochemical Sciences, 42, 285-296.

Xiao R, Chen J-Y, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H,  Du X. 2019. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell, 178, 107-121.

Xu Y, Li R, Zhang K, Wu W, Wang S, Zhang P,  Xu H. 2018. The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts. BMB Reports, 51, 350-355.

Yang Y, Yan J, Fan X, Chen J, Wang Z, Liu X, Yi G, Liu Y, Niu Y,  Zhang L. 2021. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genetics, 17, e1009910.

Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H,  Ding X. 2023. Bta-miR-206 and a novel lncRNA-lncA2B1 promote myogenesis of skeletal muscle satellite cells via common binding protein HNRNPA2B1. Cells, 12, 1028.

Zhang X, Yang S, Kang Z, Ru W, Shen X, Li M, Lan X,  Chen H. 2022a. circMEF2D negatively regulated by HNRNPA1 inhibits proliferation and differentiation of myoblasts via miR-486-PI3K/AKT Axis. Journal of Agricultural and Food Chemistry, 70, 8145-8163.

Zhang Y, Yao Y, Wang Z, Lu D, Zhang Y, Adetula AA, Liu S, Zhu M, Yang Y,  Fan X. 2022b. MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration. Genes & Diseases, 9, 1038-1048.

[1] XIAO Hong-bo, CHEN Qiong, WANG Ji-min, Les Oxley, MA Heng-yun. The puzzle of the missing meat: Food away from home and China’s meat statistics[J]. >Journal of Integrative Agriculture, 2015, 14(6): 1033-1044.
[2] Aurélie Hocquette, Carla Lambert, Clémentine Sinquin, Laure Peterolff, Zoé Wagner, Sarah P F Bonny, André Lebert, Jean-Fran?ois Hocquette. Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry[J]. >Journal of Integrative Agriculture, 2015, 14(2): 273-284.
No Suggested Reading articles found!