Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Efficient breeding of high oleic rice cultivar by editing OsFAD2-1 via CRISPR/Cas9

Yingying Wu1, 2*, Zhihui Chen2, 3, 4*, Chan Wang1, 2, Yang Xu1, 2, 3, 4, Xia Li2, 3, 4, Jianping Zhu2, 3, 4, Xiaoli Tan1, Jie Yang1, 2, 3, 4#

1 Jiangsu University, School of Life Sciences, Zhenjiang 2120001, China
2 Key Laboratory of Germplasm Innovation in Downstream of Huaihe River, Ministry of Agriculture and Rural Affairs / Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
3 Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
4 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

 Highlight: 

● CRISPR-editing OsFAD2-1 boosts oleic acid and stabilizes rice bran oil.

● Edited lines maintain key agronomic traits of breeding-ready germplasm.

●Gene editing accelerates high-oleic breeding in Jiangsu japonica rice.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

随着人们对大米营养品质关注度的提升,米糠油作为稻米副产品的高附加值开发方向日益受到重视。水稻种子中油酸含量偏低,限制了米糠油的营养价值和氧化稳定性。已有研究证实脂肪酸去饱和酶基因OsFAD2在油酸代谢中发挥关键作用,但目前在水稻中对其育种利用仍较少,尤其对其农艺性状影响研究有限。本研究以主栽粳稻品种苏垦118为材料,应用CRISPR/Cas9技术敲除OsFAD2-1基因,构建高油酸突变体。通过脂肪酸组分检测发现,突变体中油酸含量显著升高,亚油酸含量下降,脂肪酸组成得到优化。同时,对T₂代材料进行农艺性状与RVA指标分析,结果显示突变体主要农艺性状保持稳定,部分指标表现优于对照。本研究明确了OsFAD2-1对水稻籽粒脂质组成的调控作用,为功能型稻米的分子育种提供了新思路,也为米糠油品质提升及水稻副产物的高值化利用奠定了基础。



Online: 25 April 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (32201861) and Ministry of Agriculture and Rural Affairs of China, the Jiangsu Provincial Key Research and Development Program (BE2022383), and the Zhongshan Biological Breeding Laboratory, China (ZSBBLKY2023-04-1).

Cite this article: 

Yingying Wu, Zhihui Chen, Chan Wang, Yang Xu, Xia Li, Jianping Zhu, Xiaoli Tan, Jie Yang. 2025. Efficient breeding of high oleic rice cultivar by editing OsFAD2-1 via CRISPR/Cas9. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.037

Abe K, Araki E, Suzuki Y, Toki S, Saika H. 2018. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 131, 58–62.

Awad Allah M M A, Mohamed A H, El-Bana M A, El Okkiah S A F, Abdelkader M F M, Mahmoud M H, El Diasty M Z, Said M M, Shamseldin S A M, Abdein M A. 2022. Assessment of genetic variability and bran oil characters of new developed restorer lines of rice (Oryza sativa L.). Genes, 13, 1–12.

Dar A A, Choudhury A R, Kancharla P K, Arumugam N. 2017. The FAD2 gene in plants: Occurrence, regulation, and role. Frontiers in Plant Science, 8, 1789.

Doureradjou P, Koner B C. 2020. Effect of rice bran oil addition on soybean oil's oxidative degradation and fatty acid composition during heating. Journal of Food Science and Technology, 57, 3404–3412.

Farhoosh R, Tavassoli K, Sharif A. 2010. Antioxidant activity of sesame, rice bran and bene hull oils and their unsaponifiable matters. European Journal of Lipid Science and Technology, 113, 506–512.

Fox M, Newcomb K, Oliveira C, Shakiba E, Nawarathne I N. 2022. Facile analysis of rice bran oil to compare free unsaturated fatty acid compositions of parental and hybrid rice lines. Journal of the American Oil Chemists' Society, 99, 1103–1111.

Ghasemzadeh S S, Jaafar N, Rahmat A. 2020. Phytochemical, fatty acid, and proximal composition of six varieties of brown rice. Journal of Food Measurement and Characterization, 14, 1012–1020.

Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, Xiao J. 2017. A review of the chemical composition and nutritional function of olive (Olea europaea L.). Phytochemistry Reviews, 17, 1091–1110.

Jan G, Sangartit W, Pakdeechote P, Kukongviriyapan V, Sattayasai J, Senaphan K, Kukongviriyapan U. 2020. Virgin rice bran oil alleviates hypertension by upregulating eNOS and reducing oxidative stress and inflammation in L-NAME-induced hypertensive rats. Nutrition, 69, 110575.

Liang K, Zhao Y, Han J, Liu P, Qiu J, Zhu D, Qin Y, Lu L, Wang X. 2017. Fatty acid composition, vitamin A content and oxidative stability of milk in China. Journal of Applied Animal Research, 46, 566–571.

Nagendra P, Sanjay K, Shravya K. 2011. Health benefits of rice bran: A review. Journal of Nutrition & Food Science, 1, 1–10.

Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. 2018. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase two gene in Brassica napus. Plant Physiology and Biochemistry, 131, 63–69.

Pham A T, Lee J D, Shannon J G, Bilyeu K D. 2010. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biology, 10, 195.

Punia S, Kumar M, Siroha A, Purewal S. 2021. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Science, 28, 217–232.

Revilla E, Santa-Maria C, Miramontes E, Candiracci M, Rodriguez-Morgado B, Carballo M, Bautista J, Castano A, Parrado J. 2013. Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chemistry, 136, 526–531.

Shewry S, Shewry P R. 2015. Effects of abiotic stress and crop management on cereal grain composition: Implications for food quality and safety. Journal of Experimental Botany, 66, 1145–1156.

Tiwari G J, Liu Q, Shreshtha P, Li Z, Rahman S. 2016. RNAi-mediated down-regulation of the expression of OsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biology, 16, 189.

Warner K, Fehr W. 2008. Mid‐Oleic/Ultra Low Linolenic Acid Soybean Oil: A Healthful New Alternative to Hydrogenated Oil for Frying. Journal of Agricultural and Food Chemistry, 85, 2309–2315.

Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y, et al. 2019. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnology Journal, 17, 1201–1210.

Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Zhang W. 2022. CRISPR/Cas9-mediated targeted mutagenesis of OsFAD2 significantly increases oleic acid content in rice grains. Journal of Integrative Plant Biology, 64, 812–825.

Zaplin E S, Liu Q, Li Z, Butardo V M, Blanchard C L, Rahman S. 2013. Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Functional Plant Biology, 40, 996–1004.

Zhiguo E, Chen C, Yang J, Tong H, Li T, Wang L, Chen H. 2019. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Scientific Reports, 9, 19445.


No related articles found!
No Suggested Reading articles found!