Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing row spacing to boost maize yield via enhanced photosynthesis and post-silking biomass allocation

Xiangpeng Ding1, Zaiju He1, Ming Zhang2, Jing Bai3, Jiwang Zhang1, Peng Liu1, Hao Ren1, Baizhao Ren1, Bin Zhao1#

1 College of Agronomy, Shandong Agricultural University, Tai'an 271018, China

2 Shandong Denghai Seed Industry Co., Ltd., Yantai 265147, China

3 Tengzhou Agriculture and Rural Bureau, Zaozhuang 277599, China

 Highlights: 

Optimizing canopy architecture enhances photosynthetic productivity.

Allocation of assimilates to the grains is promoted by optimizing canopy architecture.

Balancing source-sink relationships and increasing yield require optimizing canopy architecture.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高密度种植能更好地发挥现代品种的增产潜力。然而,在传统行距条件下,增加种植密度会导致光照分布不佳和产量提升受限,这凸显了进一步探索与种植密度相适应的最佳行距的必要性。为评估通过改变行距延迟冠层下部叶片衰老对冠层光合性能的影响及其对产量的调控作用,本研究以郑单958为材料进行了为期两年的田间试验(2019-2020年)。设置了四个处理:LR606.75 ·m⁻², 60 cm 行距,常规种植);HR60HR80 HR100(均为 8.25 ·m⁻², 行距分别为 6080 100 cm)。对冠层结构、群体光合作用和籽粒产量进行了定量分析。测定了玉米冠层叶面积指数(LAI)、光合有效辐射(PAR)、冠层表观光合作用(CAP)、生物量分配和产量。结果表明,与 LR60 相比,高密度处理显著提高了产量。在高密度处理中,与 HR60 相比,HR80 两年的平均产量增加了 8.47%。这主要归因于 HR80 增强了吐丝后冠层下部对光合有效辐射的利用,延缓了穗下层叶面积指数(LAI)的下降,并提高了冠层表观光合速率(CAP),从而显著增加了生物量积累。与 HR100 相比,HR80 平均增产 8.17%,这是由于其在灌浆期的辐射利用效率(RUE)显著提高。此外,与 HR60 HR100 相比,HR80 的源库比显著增加,¹³C 光合产物向籽粒的分配增加,穗粒数也显著增加。因此,行距配置应与种植密度相适应以获得最佳产量。具体而言,适宜的行距可以优化群体结构,增强冠层中下部的光照分布,提高冠层表观光合作用和光能利用率,从而支持玉米获得更高产量。



Abstract  

High-density planting can better utilize the yield potential of modern varieties.  However, under traditional row spacing conditions, increasing planting density brings about poor light distribution and limited yield improvement, highlighting the need for further exploration of optimal row spacing in relation to planting density.  To assess the effect of delaying leaf senescence in the lower canopy by changing row spacing on the photosynthetic performance of the canopy and its regulatory impact on yield.  A two-year field trial (2019-2020) was conducted on Zhengdan 958 for this study. Four treatments were set up: LR60 (6.75 plants m-2, 60 cm row spacing, conventional planting); HR60, HR80, and HR100 (8.25 plants m-2, with row spacings of 60, 80, and 100 cm, respectively).  Quantitative analysis was conducted on canopy structure, population photosynthesis, and grain yield.  Maize canopy leaf area index (LAI), photosynthetically active radiation (PAR), canopy apparent photosynthesis (CAP), biomass distribution, yield were measured.  The results showed that the high-density treatments significantly increased the yield compared to LR60.  Among the high-density treatments, HR80 exhibited an average yield increase of 8.47% compared to HR60 over two years.  This was primarily attributed to HR80 enhancing the utilization of photosynthetically active radiation in the lower canopy after silking, delaying the decrease of LAI in the layers below the ear, and increasing CAP, resulting in a significant increase in biomass.  HR80 increased yield by an average of 8.17% over HR100, due to significant increase in RUE during the grain-filling period.  Furthermore, HR80 showed a significant increase in source-sink ratio compared to both HR60 and HR100, as well as an increase in 13C-photosynthetic products partitioning to the grains, and a significant increase in kernel number.  Thus, row spacing configuration should be adapted to the planting density for optimal yield.  Specifically, appropriate row spacing can optimize the population structure, enhancing light distribution within the middle and lower canopy layers, and improving the canopy apparent photosynthesis and light utilization, which will support higher yields in maize.

Keywords:  maize grain yield       row spacing configuration       canopy apparent photosynthesis       light distribution       13C-photosynthate distribution  
Online: 25 April 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (32071960) and the National Key Research and Development Program of China (2018YFD0300603, 2023YFD2303304).

About author:  #Correspondence Bin Zhao, E-mail: zhaobin@sdau.edu.cn

Cite this article: 

Xiangpeng Ding, Zaiju He, Ming Zhang, Jing Bai, Jiwang Zhang, Peng Liu, Hao Ren, Baizhao Ren, Bin Zhao. 2025. Optimizing row spacing to boost maize yield via enhanced photosynthesis and post-silking biomass allocation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.033

Acciaresi H A, Tambussi E A, Antonietta M, Zuluaga M S, Andrade F H, Guiamét J J. 2014. Carbon assimilation, leaf area dynamics, and grain yield in contemporary earlier- and later-senescing maize hybrids. European Journal of Agronomy, 59, 29-38.

Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. 2014. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research, 155, 111-119.

Bernhard B J, Below F E. 2020. Plant population and row spacing effects on corn: Phenotypic traits of positive yield-responsive hybrids. Agronomy Journal, 112, 1589-1600.

Bicego B, Savin R, Girousse C, Allard V, Slafer G A. 2024. Plasticity of grain number and its components in contrasting wheat cultivars. Field Crops Research, 319, 109653.

Borrás L, Maddonni G A, Otegui M E. 2003. Leaf senescence in maize hybrids: Plant population: Row spacing and kernel set effects. Field Crops Research, 82, 13-26.

Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H. 2021. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture, 20, 494-510.

Cheah Z X, O’Hare T J, Harper S M, Bell M J. 2020. Variation in zinc concentration of sweetcorn kernels reflects source-sink dynamics influenced by kernel number. Journal of Experimental Botany, 71, 4985-4992.

Ciampitti I A, Zhang H, Rriedemann P, Vyn T J. 2012. Potential physiological frameworks for mid-season field phenotyping of final plant nitrogen uptake, nitrogen use efficiency and grain yield in maize. Crop Science, 52, 2728-2742.

Curin F, Severini A D, Gonz´alez F G, Otegui M E. 2020. Water and radiation use efficiencies in maize: Breeding effects on single-cross Argentine hybrids released between 1980 and 2012. Field Crops Research, 246, 107683

DeBruin J L, Schussler J R, Mo H, Cooper M. 2017. Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest. Crop Science, 57, 1-16.

Dong S T, Hu C H, Gao R Q. 1993. Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. Biologia Plantarum, 35, 273-277.

Gao J, Lei M, Yang L, Wang P, Tao H, Huang S B. 2021. Reduced row spacing improved yield by optimizing root distribution in maize. European Journal of Agronomy, 127, 126291.

Gregersen P L, Culetic A, Boschian L, Krupinska K. 2013. Plant senescence and crop productivity. Plant Molecular Biology, 82, 603-622.

Han Y L, Guo D, Ma W, Ge J Z, Li X L, Ali Noor M, Zhao M, Zhou B Y. 2022. Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain. Journal of Integrative Agriculture, 21, 2559-2576.

He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. 2020. Regional gap in maize production, climate and resource utilization in China. Field Crops Research, 254, 107830.

Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, et al. 2020. How to increase maize production without extra nitrogen input. Resources, Conservation & Recycling, 160, 104913.

Hou P, Liu Y E, Liu W M, Yang H S, Xie R Z, Wang K R, Ming B, Liu G Z, Xue J, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, et al. 2021. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation & Recycling, 174, 105811.

Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. 2022. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. The Crop Journal, 10, 478-489.

Huang S B, Gao Y B, Li Y B, Xu L N, Tao H B, Wang P. 2017. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. The Crop Journal, 5, 52-62.

Jia Q M, Sun L F, Mou H Y, Ali S, Liu D H, Zhang Y, Zhang P, Ren X L, Jia Z K. 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management, 201, 287-298.

Jin R, Li Z, Wang X L, Liu F, Kong F L, Liu Q L, Lan T Q, Feng D J, Yuan J C. 2023. Optimizing row spacing increases stalk lodging resistance by improving light distribution in dense maize populations. Agronomy, 13, 462.

King K, Ferela A, Vyn T J, Trifunović S, Eudy D, Hurburgh C R, Lamkey K R, Archontoulis S V. 2024. Genetic gains in short‐season corn hybrids: Grain yield, yield components, and grain quality traits. Crop Science, 64, 710-725.

Li R F, Hu D D, Ren H, Yang Q L, Dong S T, Zhang J W, Zhao B, Liu P. 2022. How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield. The Crop Journal, 10, 853-863.

Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. 2021a. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Security, 10, e312.

Li R F, Zhang G Q, Xie R Z, Hou P, Ming B, Xue J, Wang K R, Li S K. 2021b. Optimizing row spacing increased radiation use efficiency and yield of maize. Agronomy Journal, 113, 4806-4818.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Liu W M, Yang Y S, Xu W J, Chen J L, Li S K. 2019. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Science, 59, 1236-1247.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Xu W J, Liu W M, Yang Y S, Li S K. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha-1. Field Crops Research, 213, 221-230.

Liu G Z, Liu W M, Hou P, Ming B, Yang Y S, Guo X X, Xie R Z, Wang K R, Li S K. 2021. Reducing maize yield gap by matching plant density and solar radiation. Journal of Integrative Agriculture, 20, 363-370.

Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. 2022a. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Research, 283, 108544.

Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, Hou P, Li S K. 2022b. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Security, 11, e375.

Liu T N, Chen J Z, Wang Z Y, Wu X R, Wu X C, Ding R X, Han Q F, Cai T, Jia Z K. 2018. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crops Research, 219, 242-249.

Liu T N, Gu L M, Dong S T, Zhang J W, Liu P, Zhao B. 2015. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 70, 32-39.

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 14, 2637.

Ma D L, Xie R Z, Yu X F, Li S K, Gao J L. 2022. Historical trends in maize morphology from the 1950s to the 2010s in China. Journal of Integrative Agriculture, 21, 2159-2167.

Maddonni G A, Otegui M E, Cirilo A G. 2001. Plant population density: Row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71, 183-193.

Meng Q F, Cui Z L, Yang H S, Zhang F S, Chen X P. 2018. Establishing high-yielding maize system for sustainable intensification in China. Advances in Agronomy, 148, 85-109.

Mu X H, Chen Q W, Chen F J, Yuan L X, Mi G H. 2018. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiology and Biochemistry, 129, 27-34.

Ordóñez R A, Savin R, Mariano Cossani C, Slafer G A. 2018. Maize grain weight sensitivity to source-sink manipulations under a wide range of field conditions. Crop Science, 58, 2542-2557.

Perez R, Fournier C, Cabrera-Bosquet L, Artzet S, Pradal C, Brichet N, Chen T W, Chapuis R, Welcker C, Tardieu F. 2019. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant Cell Environment, 42, 2105-2119.

Piao L, Qi H, Li C F, Zhao M. 2016. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Research, 198, 258-268.

Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Li L, Lv G Y, Yang Z L, Zhao J R. 2021. Characteristics of dry matter accumulation, transportation and distribution of maize varieties differing in maturities in different ecological zones. Journal of Maize Science, 29, 60-68.

Reynolds M P, Pellegrineschi A, Skovmand B. 2005. Sink-limitation to yield and biomass: A summary of some investigations in spring wheat. Annals of Applied Biology, 146, 39-49.

Shao L P, Li G, Zhao Q N, Li Y B, Sun Y T, Wang W N, Cai C, Chen W P, Liu R H, Luo W H, Yin X Y, Lee X H. 2020. The fertilization effect of global dimming on crop yields is not attributed to an improved light interception. Global Change Biology, 26, 1697-1713.

Shao L P, Liu Z J, Li H Z, Zhang Y L, Dong M M, Guo X H, Zhang H, Huang B W, Ni R B, Li G, Cai C, Chen W P, Luo W H, Yin X Y. 2021. The impact of global dimming on crop yields is determined by the source-sink imbalance of carbon during grain filling. Global Change Biology, 27, 689-708.

Simkin A J, López-Calcagno P E, Raines C A. 2019. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70, 1119-1140.

Snider J L, Thangthong N, Pilon C, Virk G, Tishchenko V. 2018. OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes. Plant Physiology and Biochemistry, 132, 249-257.

Souza R T G, Teixeira I R, Jesus F F, Reis E F. 2017. Spray droplet spectrum and spray deposition in different soybean sowing systems. Australian Journal of Crop Science, 11, 1195-1202.

Testa G, Reyneri A, Blandino M. 2016, Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 72, 28-37.

Tian C, Han J C, Li J, Zhen G, Liu Y, Lu Y J, Wang Y K, Wang Y. 2019. Effects of row direction and row spacing on maize leaf senescence. PLoS ONE, 14, e0215330.

Yan Y Y, Duan F Y, Li X, Zhao R L, Hou P, Zhao M, Li S K, Wang Y H, Dai T B, Zhou W B. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652-2667.

Yang H W, Chai Q, Yin W, Hu F, Qin A Z, Fan Z L, Yu A Z, Zhao C J, Fan H. 2022. Yield photosynthesis and leaf anatomy of maize in inter- and mono-cropping systems at varying plant densities. The Crop Journal, 10, 893-903.

Yang Y S, Guo X X, Liu H F, Liu G Z, Liu W M, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2021. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. Journal of Integrative Agriculture, 20, 482-493.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2022. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. European Journal of Agronomy, 137, 126520.

Zhang L, Liang Z Y, He X M, Meng Q F, Hu Y C, Schmidhalter U, Zhang W, Zou C Q, Chen X P. 2020. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crops Research, 249, 107754.

Zuo W Q, Wu B J, Wang Y X, Xu S Z, Chen M Z, Liang F B, Tian J S, Zhang W F. 2024. Optimal row spacing configuration to improve cotton yield or quality is regulated by plant density and irrigation rate. Field Crops Research, 305, 109187. 

No related articles found!
No Suggested Reading articles found!