Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and validation of stripe rust resistance on 7BL in wheat cultivar Aikang 58 through linkage and association analysis

Xiaoting Wang1*, Xinying Zhou1*, Jinyu Han1*, Wenjie Yue1, Weihang Sun1, Tiantian Gao1, Dan Liu1, Chenchen Li1, Xuehong Ma1, Pingtao Jiang1, Songhan Ji1, Haohao Yan2, Weijun Zheng1, Chunlian Li1, Qingdong Zeng2, Shengjie Liu2, Xinmei Zhang3, Zhensheng Kang2, Dejun Han1*, Zhiyong Liu4#, Jianhui Wu1#

1 State Key Laboratory of Crop Stress Resistance and High-Efficiency Production/College of Agronomy, Northwest A&F University, Yangling 712100, China

2 State Key Laboratory of Crop Stress Resistance and High-Efficiency Production/College of Plant Protection, Northwest A&F University, Yangling 712100, China

3 State Key Laboratory of Crop Stress Resistance and High-Efficiency Production/College of Life Sciences, Northwest A&F University, Yangling 712100, China

4 Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

 Highlights: 

A genomic region spanning over 30 Mb on chromosome arm 7BL carring multiple loci for durable resistance to stripe rust was identified in wheat cultivar Aikang 58.

GWAS and sweep selection analyses revealed the specific genomic regions on chromosome arm 7BL with artificial selection signals in different breeding groups.

High-throughput molecular markers have been developed to accelerate the deployment of YrAK58.1, YrAK58.2, YrAK58.3 in breeding programs.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由条锈菌(Puccinia striiformis f. sp. tritici , Pst)引起的条锈病影响我国小麦安全生产的重病害。小麦品种矮抗58AK58)自2005年推广以来一直对条锈病表现出较高水平的抗性,但是其抗条锈病遗传基础尚不清楚。用AK58分别与Avocet S和科农9204杂交产生含有128个家系的AAK F2:8重组自交系(RIL)和含有1042个家系的KAK F2:3群体解析AK58抗条锈病遗传基础。此外,对688份小麦种质(Panel 1)组成的自然群体进行全基因组关联分析(GWAS)和选择性清除分析sweep selection)以验证目标区段的抗病单倍型和对388份中国小麦品种与高代育种系(Panel 2)组成的自然群体进行分子标记检测评估AK58中抗病位点的使用情况。其中两个遗传群体的表型和基因型来源分别是杨凌(YL)和贵阳(GY)两地五个生长季(2017-2022)的表型数据和GBW16K SNP芯片基因型数据以及KASP标记的基因分型。通过QTL定位,在染色体1BL2BS2BL5BL7BL3QTL)上共检测到7个抗条锈病QTL位点。其中,位于2BLQYrak.nwafu-2BL经分析鉴定为抗病基因Yr5b,对条锈菌生理小种V32L表现全生育期抗性;位于7BL染色体715.77 - 733.25 Mb(基于中国春 RefSeq v.2.1)区域内的三个QTL位点分别被命名为YrAK58.1YrAK58.2YrAK58.3。其中,YrAK58.1为抗病基因Yr6YrAK58.2对多个Pst小种具有全生育期抗性并且在田间也表现出有效抗性,而YrAK58.3在所有田间环境中都表现出稳定的成株期抗性。其余QTL的抗性受环境影响,作用效果较小。通过GWAS和选择性清除分析显示,在不同育种群体中,7BL染色体上的3QTL所在区域存在人工选择信号。利用与Yr6YrAK58.2YrAK58.3紧密连锁的分子标记能够检测三个位点的单倍型组合,并且在Panel 2中仅有3.6%的小麦材料同时检测到这三个基因,表明三个位点的抗性基因组合在未来抗性育种改良中具有很大应用前景



Abstract  

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a serious disease affecting wheat production in China.  Wheat cultivar Aikang 58 (AK58) has exhibited effective resistance to stripe rust since its release in 2005.  But the genetic basis of its stripe rust resistance remains unknown. Two genetic populations from the crosses of Avocet S/AK58 (128 recombinant inbred lines) and Kenong 9204/AK58 (1,042 F2:3 families) were used to dissect the genetic basis of stripe rust resistance in AK58, respectively. In addition, Panel 1 consisting of 688 wheat accessions were used for genome-wide association study (GWAS) and sweep selection analysis to validate the presence of the resistance haplotype of the target region and Panel 2 consisting of 388 Chinese cultivars and breeding lines was genotyped using molecular markers to evaluate the prevalence and distribution of the resistant loci in AK58. The genetic populations were evaluated for stripe rust responses at Yangling and Guiyang over five cropping seasons (2017-2022) and genotyped using GBW16 K SNP array and KASP markers. Using quantitative trait loci (QTLs) analysis, seven QTL were detected on chromosome arms 1BL, 2BS, 2BL, 5BL and 7BL (three QTLs).  Among them, QYrak.nwafu-2BL identified as Yr5b conferred all-stage resistance to Pst race V32L; three QTL within the 7BL chromosome arm region 715.77-733.25 Mb based on Chinese Spring RefSeq v.2.1, were designated YrAK58.1, YrAK58.2 and YrAK58.3, respectively.  YrAK58.1 confirmed as Yr6, and YrAK58.2 conferred all-stage resistance to multiple Pst races and were also effective in field environments. YrAK58.3 contributed stable resistance in all field environments. The remaining QTL were environment-dependent with minor effect. GWAS and sweep selection analyses revealed specific genomic regions with artificial selection signals for the three QTL on chromosome arm 7BL in different breeding groups.  A haplotype combination of high-throughput molecular markers tightly flanking Yr6YrAK58.2 and YrAK58.3 detected all three genes in 3.6% of entries in Panel 2. The same marker set can be used to further exploit the resistance gene combination in breeding programs.

Keywords:  Aikang 58       stripe rust resistance       QTL mapping       Yr6       YrAK58.2       YrAK58.3  
Online: 25 April 2025  
Fund: 

This study was financially supported by the National Key R&D Program of China (2023YFD1200400), the National Natural Science Foundation of China (32272088, 32372562 and 32472103), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JCW-18 and 2020JCW-16). 

About author:  #Correspondence Dejun Han, E-mail: handj@nwafu.edu.cn; Zhiyong Liu, E-mail: zyliu@genetics.ac.cn; Jianhui Wu, E-mail: wujh@nwafu.edu.cn *These authors contributed equally.

Cite this article: 

Xiaoting Wang, Xinying Zhou, Jinyu Han, Wenjie Yue, Weihang Sun, Tiantian Gao, Dan Liu, Chenchen Li, Xuehong Ma, Pingtao Jiang, Songhan Ji, Haohao Yan, Weijun Zheng, Chunlian Li, Qingdong Zeng, Shengjie Liu, Xinmei Zhang, Zhensheng Kang, Dejun Han, Zhiyong Liu, Jianhui Wu. 2025. Identification and validation of stripe rust resistance on 7BL in wheat cultivar Aikang 58 through linkage and association analysis. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.030

Aury J M, Engelen S, Benjamin I, Cécile M, Pauline, Lasserre-Zuber, Caroline B, Corinne C, Hélène R, Philippe, Leroy, Sandrine A, Isabelle D, Arnaud B, David G, Papon N, Etienne P, Marion R, Adriana A P W, Frédéric Choulet. 2021. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves higher resolution for research and breeding. BioRxiv, 11, giac034

Bariana H, Kant L, Qureshi N, Forrest K, Miah H, Bansal U. 2022. Identification and characterisation of stripe rust resistance genes Yr66 and Yr67 in wheat cultivar VL Gehun 892. Agronomy12, 318.

Bouvet L, Holdgate S, James L, Thomas J, Mackay I J, Cockram J. 2022. The evolving battle between yellow rust and wheat: Implications for global food security. Theoretical and Applied Genetics135, 741-753. 

Cromey M G. 1989. Infection and control of stripe rust in wheat spikes. New Zealand Journal of Experimental Agriculture, 17, 159–164.

Chen X M. 2005. Epidemiology and control of stripe rust Puccinia striiformis f. sp.tritici on wheat. Canadian Journal of Plant Pathology27, 314–337.

Chen X M. 2013. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 04, 608-627.

Chen X, Kang Z. 2017. Stripe Rust. Springer, the Netherlands.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, Depristo M A, Handsaker R E, Lunter G, Marth G T, Sherryet S T, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and vcftools. Bioinformatics, 27, 2156-2158.

Han G H, Yan H W, Gu T T, Cao L J, Zhou Y L, Liu W, Liu D C, An D G. 2023. Identification of a wheat powdery mildew dominant resistance gene in the pm5 locus for high-throughput marker-assisted selection. Plant Disease, 107, 450-456.

Hautea R A, Coffman W R, Sorrells W E, Bergstrom G C. 1987. Inheritance of partial resistance to powdery mildew in spring wheat. Theoretical and Applied Genetics, 73, 609–615.

Herrera-Foessel S A, Singh R P, Huerta-Espino J, Rosewarne G M, Periyannan S K, Viccars L, Calvo-Salazar V, Lan C X, Lagudah E S. 2012. Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124, 1475-1486.

Huang S, Wu J H, Wang X T, Mu J M, Xu Z, Zeng Q D, Liu S J, Wang Q L, Kang Z S, Han D J. 2019. Utilization of the genome wide wheat 55K SNP array for genetic analysis of stripe rust resistance in common wheat line P9936. Phytopathology, 109, 819-827.

IWGSC (International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. 

IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.

Joukhadar R, Daetwyler H D, Gendall A R, Hayden M J. 2019. Artificial selection causes significant linkage disequilibrium among multiple unlinked genes in Australian wheat. Evolutionary Applications, 12, 1610-1625.

Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, Toledo F H, Govindan V, Mondal S, Kumar U, Bhavani S, Singh P K, Randhawa M S, He X, Guzman C, Dreisigacker S, Rouse M N, Jin Y, Pérez-Rodríguez P, Montesinos-López O A, et al. 2019. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics51, 1530–1539.

Kosambi D D. 1944. The estimation of map distance from recombination values. Annals of Eugenics12, 125-130.

Lagudah E S. 2011. Molecular genetics of race non-specific rust resistance in wheat. Euphytica, 179, 81-91.

Li G, Ren Y, Yang Y, Chen S, Zheng J, Zhang X, Li J, Chen M, Sun X, Lv C, Li X, Zhang B, Sun X, Li Y, Zhao M, Dong C, Tang J, Huang Z, Peng Y, Gu D, et al. 2024. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. Plant Communications, 101222.

Li Y, Niu Y C, Chen X M. 2009. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theoretical and Applied Genetics, 118, 339–346.

Line R F, Qayoum A. 1992. Virulence, Aggressiveness, Evolution and Distribution of Races of Puccinia Striiformis (The Cause of Stripe of Wheat) in North America, 1968–1987. Technical Bulletin. USA.

Liu S J, Huang S, Zeng Q D, Wang X T, Yu R, Wang Q L, Singh R P, Bhavani S, Kang Z S, Wu J H, Han D J. 2021. Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. Theoretical and Applied Genetics, 134, 2005-2021.

Liu S J, Liu D, Zhang C L, Zhang W J, Wang X T, Mi Z W, Gao X, Ren Y, Lan C X, Liu X K, Zhao Z D, Liu J J, Li H S, Yuan F P, Su B F, Kang Z S, Li C L, Han D J, Wang C F, Cao X Y, et al. 2023. Slow stripe rusting in Chinese wheat Jimai 44 conferred by Yr29 in combination with a major QTL on chromosome arm 6AL. Theoretical and Applied Genetics, 136, 175. 

Liu S J, Wang X T, Zhang Y Y, Jin Y G, Xia Z H, Xiang M J, Huang S, Qiao L Y, Zheng W J, Zeng Q D, Wang Q L, Yu R, Singh R P, Bhavani S, Kang Z S, Han D J, Wang C F, Wu J H. 2022. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theoretical and Applied Genetics, 135, 351-365. 

Liu S J, Xiang M J, Wang X T, Li J Q, Cheng X R, Li H Z, Singh R P, Bhavani S, Huang S, Zheng W J, Li C L, Yuan F P, Wu J H, Han D J, Kang Z S, Zeng Q D. 2025. Development and application of the genobaits®wheatsnp16k array to accelerate wheat genetic research and breeding. Plant Communications, 6, 101138.

Liu Z, Yang F, Deng C, Wan H, Tang H, Feng J, Wang Q, Yang N, Li J, Yang W. 2024. Chromosome-level assembly of the synthetic hexaploid wheat-derived cultivar Chuanmai 104. Scientific Data, 11, 670. 

Luo M, Xie L Q, Chakraborty S, Wang A, Matny O, Jugovich M, Kolmer J A, Richardson T, Bhatt D, Hoque M, Patpour M, Sørensen C, Ortiz D, Dodds P, Steuernagel B, Wulff B B H, Upadhyaya N M, Mago R, Periyannan S, Lagudah E, et al. 2021. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology, 39, 561-566.

Mcdonald B A, Linde C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163-180.

McIntosh R, Mu J M, Han D J, Kang Z S. 2018. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. The Crop Journal, 6, 321-329. 

Meng L, Li H H, Zhang L Y, Wang J K. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Niu J Q, Ma S W, Zheng S S, Zhang C, Lu Y R, Si Y Q, Tian S Q, Shi X L, Liu X L, Naeem M K, Sun H, Hu Y F, Wu H L, Cui Y, Chen C L, Long W B, Zhang Y, Gu M J, Cui M, Lu Q, et al. 2023. Whole-genome sequencing of diverse wheat accessions uncovers genetic changes during modern breeding in china and the United States. The Plant Cell, 35, 4199-4216.

Patro R, Duggal G, Love M I, Irizarry R A, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14, 417-419.

Peterson R F, Campbell A B, Hannah A E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26, 496–500.

Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 129, 1843-1860.

Ren R S, Wang M N, Chen X M, Zhang Z J. 2012. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics125, 847-857.

Sato K, Abe F, Mascher M, Haberer G, Gundlach H, Spannagl M, Shirasawa K, Isobe S. 2021. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar Fielder. DNA Research, 28, dsab008.

Semagn K, Babu R, Hearne S, Olsen M. 2014. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1-14.

Singh R P, Huerta-Espino J, Bhavani S. 2011. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica179, 175-186.

Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. 2013. Crops that feed the world 10 past successes and future challenges to the role played by wheat in global food security. Food Security5, 291–317.

Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, et al. 2022. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Molecular Plant, 15, 1440-1456.

Song W, Ko L, Henry R J .1994. Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theoretical and Applied Genetics, 89, 509–513.

Spielmeyer W, Singh R P, McFadden H, Wellings C R, Huerta-Espino J, Kong X, Appels R, Lagudah E S .2008. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: A disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, 116, 481-490.

Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. 2020. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18, 1354-1360.

Tong J Y, Zhao C, Liu D, Jambuthenne D T, Sun M J, Dinglasan E, Periyannan S K, Hickey L T, Hayes B J. 2024. Genome-wide atlas of rust resistance loci in wheat. Theoretical and Applied Genetics, 137, 179.

USDA (United States Department of Agriculture). 2022. World agricultural production. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity, 93, 77–78.

Walkowiak S, Gao L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri J N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature, 588, 277-283.

Wang S C, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787-796.

Wellings C R. 2003. Stripe rust head infection. Cereal Rust Report1, 1–2.

Wellings C R. 2009. Late season stripe rust damage: Head infection and unpredicted variety responses. Cereal Rust Report7, 1–4.

Wellings C R. 2011. Global status of stripe rust: A review of historical and current threats. Euphytica, 179, 129–141.

Wu J, Ma S, Niu J, Sun W, Dong H, Zheng S, Zhao J, Liu S, Yu R, Li Y, Han J, Wang Y, Chen T, Zhang C, Zhang W, Ding B, Chang L, Xue W, Zheng W, Li C, Han D, Kang Z, Zeng Q, Ling H, 2025. Genomics-driven discovery of superior alleles and genes for yellow rust resistance in wheat. Nature Genetics, in press. 

Wu J, Wang Q, Kang Z, Liu S, Li H, Mu J, Dai M, Han D, Zeng Q, Chen X. 2017. Development and validation of KASP-SNP markers for QTL underlying resistance to stripe rust in common wheat cultivar P10057. Plant Disease, 101, 2079-2087.

Wu J H, Liu S J, Wang Q L, Zeng Q D, Mu J M, Huang S, Yu S Z, Han D J, Kang Z S. 2018. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theoretical and Applied Genetics, 131, 43-58.

Xu H J, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. 2014. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica198, 317-323.

Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S, Chen F. 2019. Investigation and genome-wide association study for fusarium crown rot resistance in Chinese common wheat. BMC Plant Biology, 19, 153.

Zeibig F, Kilian B, Frei M. 2022. The grain quality of wheat wild relatives in the evolutionary context. Theoretical and Applied Genetics, 135, 4029-4048.

Zhang H, Liu Y M, Zhang X Y, Ji W H, Kang Z S. 2023. A necessary considering factor for breeding: Growth-defense tradeoff in plants. Stress Biology, 3, 6.

No related articles found!
No Suggested Reading articles found!