Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Rice stripe virus protein NS3 exploits synergistically insect vector importin and ubiquitin systems to promote viral replication

Lu Zhang1, Ze Qu1, Yihui Tan1, Yao Li1, Xinyi Li1, Zhipeng Huang1, Siyuan Ruan1, Shimin Zuo2, Fang Liu1, 2, 3#, Wenxing Hu1#

1 College of Plant Protection, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China 

3 Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China 

 Highlights 

l RSV infection activates genes involved in both the non-classical and classical import pathways in the insect vector SBPH.

l A member of the importin β family of SBPH, importin 5, mediates nuclear entry of RSV protein NS3.

l The ubiquitin system interacts synergistically with the nuclear import pathway to facilitate RSV NS3 nuclear entry and viral replication in SBPH.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

多数对农业安全生造成严重危害的植物病毒都依赖于昆虫介体进行传播。病毒及其编码的蛋白进入宿主细胞核的过程是复制和感染扩散的关键环节灰飞虱(Laodelphax striatellus)传播的水稻条纹病毒(Rice stripe virusRSV),是水稻上最具破坏性的病原物之一。本研究发现RSV侵染能显著诱导灰飞虱经典与非经典核转运途径相关基因的表达。其中,灰飞虱核转运蛋白β家族成员—importin5LsIPO5)在RSV感染的中肠中表达量显著上调了84%进一步研究发现,RSV非结构蛋白NS3的核定位信号(NLS168YRSPSKKRHKYV179)能够直接与LsIPO5结合,从而促进NS3的核转运过程。此外,灰飞虱RINGE3泛素连接酶(LsRING)介导的NS3泛素化修饰,不仅增强了NS3LsIPO5的结合,增加了NS3在灰飞虱细胞的核周定位。当同时沉默LsIPO5LsRING基因时,灰飞虱体内的RSV载量显著降低。这些结果表明泛素化修饰与LsIPO5协同促进了NS3的核转运,从而增强了RSV的复制。我们的研究揭示了RSV在昆虫介体中感染的分子协同机制,并通过昆虫介体控制植物病毒病传播提供了潜在靶



Abstract  

Plant viruses pose significant threats to agriculture, with many vectored by insect pests. The entry of viruses and their encoded proteins into the host nucleus is a critical step for promoting some viral replication and enabling systemic infection. Laodelphax striatellus, also known as the small brown planthopper (SBPH), is an efficient vector for rice stripe virus (RSV), one of the most damaging viruses of rice. In this study, we demonstrate that RSV infection induces the expression of genes in both the classical and non-classical nuclear import pathways of SBPH. A gene belonging to the importin β family, importin 5 (LsIPO5), was upregulated by 84% in SBPH midguts infected with RSV. The nuclear localization signal (NLS, 168YRSPSKKRHKYV179) is located within the nonstructural protein NS3 directly bound to LsIPO5, thereby facilitating NS3 nuclear entry. Moreover, a RING-type E3 ligase (LsRING) in SBPH, which mediated the ubiquitination of NS3 in the insect vector, enhanced NS3 binding to LsIPO5 and facilitated NS3 perinuclear localization. Combined treatment of SBPH with both dsIPO5 and dsRING significantly reduced RSV loads, highlighting the importance of LsIPO5 and NS3 ubiquitination cooperation in facilitating viral replication. Our findings provide new insights into synergistic molecular mechanisms that govern RSV infection and suggest potential therapeutic targets to control viral transmission through their insect vectors.

Keywords:  Laodelphax striatellus       rice stripe virus        cytoplasmic-nuclear trafficking        importin        ubiquitin  
Online: 18 April 2025  
Fund: 

This research was supported by the Natural Science Foundation of Jiangsu Province (BK20240902 and BK20240904) and the National Natural Science Foundation of China (32272533). 

About author:  Lu Zhang, E-mail: Zhanglu93@yzu.edu.cn; #Correspondence Fang Liu, E-mail: liufang@yzu.edu.cn; Wenxing Hu, E-mail: wxh2100@163.com

Cite this article: 

Lu Zhang, Ze Qu, Yihui Tan, Yao Li, Xinyi Li, Zhipeng Huang, Siyuan Ruan, Shimin Zuo, Fang Liu, Wenxing Hu. 2025. Rice stripe virus protein NS3 exploits synergistically insect vector importin and ubiquitin systems to promote viral replication. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.025

Arnold M, Nath A, Hauber J, Kehlenbach R H. 2006. Multiple importins function as nuclear transport receptors for the Rev protein of human immunodeficiency virus type 1. The Journal of Biological Chemistry, 281, 20883-20890.

Athukorala A, Donnelly C M, Pavan S, Nematollahzadeh S, Djossou V A, Nath B, Helbig K J, Di Iorio E, Mcsharry B P, Alvisi G, Forwood J K, Sarker S. 2024. Structural and functional characterization of siadenovirus core protein VII nuclear localization demonstrates the existence of multiple nuclear transport pathways. The Journal of General Virology, 105, 001928

Bragard C, Caciagli P, Lemaire O, Lopez-Moya J J, Macfarlane S, Peters D, Susi P, Torrance L. 2013. Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51, 177-201.

Cai M, Si J, Li X, Zeng Z, Li M. 2016. Characterization of the nuclear import mechanisms of HSV-1 UL31. Biological Chemistry, 397, 555-561.

Deng T, Engelhardt O G, Thomas B, Akoulitchev A V, Brownlee G G, Fodor E. 2006. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. Journal of Virology, 80, 11911-11919.

Dohner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, Rother F, Koithan T, Rudolph K, Buch A, Prank U, Binz A, Hugel S, Lebbink R J, Hoeben R C, Hartmann E, Bader M, Bauerfeind R, Sodeik B. 2018. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. Plos Pathogens, 14, e1006823.

Dow J A. 1987. Insect midgut function. Advances in Insect Physiology, 19, 187-328.

Falk B W, Tsai J H. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology, 36, 139-163.

Fan C D, Lum M A, Xu C, Black J D, Wang X. 2013. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. The Journal of Biological Chemistry, 288, 1674-1684.

He Y Z, Wang Y M, Yin T Y, Fiallo-Olive E, Liu Y Q, Hanley-Bowdoin L, Wang X W. 2020. A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proceedings of the National Academy of Sciences of the United States of America, 117, 16928-16937.

Hofmann S, Plank V, Groitl P, Skvorc N, Hofmann K, Luther J, Ko C, Zimmerman P, Bruss V, Stadler D, Carpentier A, Rezk S, Nassal M, Protzer U, Schreiner S. 2023. SUMO modification of hepatitis B virus core mediates nuclear entry, promyelocytic leukemia nuclear body association, and efficient formation of covalently closed circular DNA. Microbiology Spectrum, 11, e0044623.

Kong L, Wu J, Lu L, Xu Y, Zhou X. 2014. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 7, 691-708.

Koonin E V, Dolja V V, Krupovic M, Kuhn J H. 2021. Viruses defined by the position of the virosphere within the replicator space. Microbiology and Molecular Biology Reviews, 85, e0019320.

Krawczyk E, Hanover J A, Schlegel R, Suprynowicz F A. 2008. Karyopherin β3: A new cellular target for the HPV-16 E5 oncoprotein. Biochemical and Biophysical Research Communications, 371, 684-688.

Levin A, Hayouka Z, Friedler A, Loyter A. 2010. Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus, 1, 422-431.

Levin A, Neufeldt C J, Pang D, Wilson K, Loewen-Dobler D, Joyce M A, Wozniak R W, Tyrrell D L. 2014. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web. PLoS ONE, 9, e114629.

Li Y, Chen D, Hu J, Zhang K, Kang L, Chen Y, Huang L, Zhang L, Xiang Y, Song Q, Liu F. 2020. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. Plos Pathogens, 16, e1008710.

Lian S, Cho W K, Jo Y, Kim S M, Kim K H. 2014. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization. Virus Research, 183, 6-14.

Lin C, Hu J, Dai Y, Zhang H, Xu K, Dong W, Yan Y, Peng X, Zhou J, Gu J. 2022. Porcine circovirus type 2 hijacks host IPO5 to sustain the intracytoplasmic stability of its capsid protein. Journal of Virology, 96, e0152222.

Liu H, Wei C, Zhong Y, Li Y. 2007. Rice black-streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Letters, 581, 2534-2540.

Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. 2021. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling, 19, 60.

Luan Y, Long W, Dai L, Tao P, Deng Z, Xia Z. 2024. Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection. Nature Communications, 15, 5515.

Luo H. 2016. Interplay between the virus and the ubiquitin-proteasome system: Molecular mechanism of viral pathogenesis. Current Opinion in Virology, 17, 1-10.

Martin A J, Jans D A. 2021. Antivirals that target the host IMPα/β1-virus interface. Biochemical Society Transactions, 49, 281-295.

Meng X, Guo X, Zhu Y, Xie H, Wang R. 2020. Mechanism of nuclear translocation of hypoxia-inducible factor-1α in influenza A (H1N1) virus infected-alveolar epithelial cells. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 32, 8-13. (in Chinese)

Nandi D, Tahiliani P, Kumar A, Chandu D. 2006. The ubiquitin-proteasome system. Journal of Biosciences, 31, 137-155.

Nelson L M, Rose R C, Moroianu J. 2003. The L1 major capsid protein of human papillomavirus type 11 interacts with Kap β2 and Kap β3 nuclear import receptors. Virology, 306, 162-169.

Pentecost M, Vashisht A A, Lester T, Voros T, Beaty S M, Park A, Wang Y E, Yun T E, Freiberg A N, Wohlschlegel J A, Lee B. 2015. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. Plos Pathogens, 11, e1004739.

Richardson J, Sylvester E S. 1968. Further evidence of multiplication of sowthistle yellow vein virus in its aphid vector, Hyperomyzus lactucae. Virology, 35, 347-355.

Ros C, Kempf C. 2004. The ubiquitin-proteasome machinery is essential for nuclear translocation of incoming minute virus of mice. Virology, 324, 350-360.

Singhal P K, Kumar P R, Rao M R, Kyasani M, Mahalingam S. 2006. Simian immunodeficiency virus Vpx is imported into the nucleus via importin alpha-dependent and-independent pathways. Journal of Virology, 80, 526-536.

Tatineni S, Hein G L. 2023. Plant viruses of agricultural importance: Current and future perspectives of virus disease management strategies. Phytopathology, 113, 117-141.

Wang Y E, Park A, Lake M, Pentecost M, Torres B, Yun T E, Wolf M C, Holbrook M R, Freiberg A N, Lee B. 2010. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. Plos Pathogens, 6, e1001186.

Wente S R, Rout M P. 2010. The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspectives in Biology, 2, a000562.

Whitfield A E, Falk B W, Rotenberg D. 2015. Insect vector-mediated transmission of plant viruses. Virology, 479-480, 278-289.

Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. 2024. Plant virology in the 21st century in China: Recent advances and future directions. Journal of Integrative Plant Biology, 66, 579-622.

Xavier C A D, Tyson C, Kerner L M, Whitfield A E. 2024. RNAi-mediated knockdown of exportin 1 negatively affected ovary development, survival and maize mosaic virus accumulation in its insect vector Peregrinus maidis. Insect Molecular Biology, 33, 295-311.

Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui C P, Liu C H, He F, Zhang L. 2021. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Research, 31, 291-311.

Xiong R, Wu J, Zhou Y, Zhou X. 2008. Identification of a movement protein of the tenuivirus rice stripe virus. Journal of Virology, 82, 12304-12311.

Zhang L, Li Y, Kuhn J H, Zhang K, Song Q, Liu F. 2024. Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation. Plos Pathogens, 20, e1012112.

Zhao W, Yang P, Kang L, Cui F. 2016. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. The New Phytologist, 210, 196-207.

Zhao W, Zhu J, Lu H, Zhu J, Jiang F, Wang W, Luo L, Kang L, Cui F. 2022. The nucleocapsid protein of rice stripe virus in cell nuclei of vector insect regulates viral replication. Protein & Cell, 13, 360-378.

Zheng L, He J, Ding Z, Zhang C, Meng R. 2018. Identification of functional domain(s) of fibrillarin interacted with p2 of Rice stripe virus. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 8402839.

[1] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
No Suggested Reading articles found!