Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
How do scientists use terminology related to cropland? Examining the disparity across disciplines and regions

Gehui Jin, Yanbing Wei#, Qiangyi Yu, Wenbin Wu

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 

l Differences in six cropland-related terminologies were uncovered through a literature review.

l Disparities exist across research disciplines and geographical regions due to agricultural mechanization, colonial history, and migration patterns.

l Standardizing cropland terminology is needed to foster interdisciplinary research and improve data comparability.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

农田通常被定义为适宜或实际用于种植作物的土地,其应用术语种类多样,包括farmland”“arable land”“cultivated land等。然而,科学文献中常忽视这些术语的细微差异术语使用的不一致易引发研究结论与政策讨论的歧义,阻碍了耕地领域的研究对比与数据应用。本研究通过对5214篇科学论文进行文献综述,结合独立性检验、聚类分析与相关性方法,系统性地揭示了六类农田相关术语的应用差异。结果表明:(1耕地术语在学科偏好上具有显著差别。生物多样性与保护领域倾向使用“farmland”以强调人类活动影响,地质学与计算机科学则偏好“cropland”;地理学研究为明确地理边界多采用“cultivated land”,而工程类文献更关注“arable land”;(2耕地术语应用具有突出的区域差异中国学者与“cultivated land”呈现强关联性,美国研究则多使用“agricultural land”这种区域差异同时农业机械化水平、殖民历史及移民模式等多因素驱动。本研究首次系统解析了农田术语的学科与区域异质性,提出术语标准化对促进跨学科数据融合、提升全球农业环境政策协调性的重要意义。



Abstract  

In many existing dictionaries, cropland is defined as land that is suitable for or used to grow crops. It has several synonyms, such as “farmland”, “arable land”, and “cultivated land”. However, in scientific literature, the nuances of these terms are often overlooked. The inconsistent terminology usage could lead to ambiguity and confusion in research and policy discussions. In particular, it creates difficulties for newcomers and students when they search for precise information in the published literature. Hence, exploring the variations of terminology applications is important for the cropland-related research community. In this study, the differences in six cropland-related terminologies were explored through a review of 5,214 scientific articles, by employing the independence test, clustering approach, and correlation analysis. The results showed that disparities exist across disciplines. For example, biodiversity & conservation studies preferentially use “farmland” to highlight effects from human activities, while studies in geology and computer science use “cropland”. The term “cultivated land” tends to be used in geography research for clear geographical demarcation, while arable land” is related to engineering studies. Moreover, further disparities based on the geographical affiliations of the authors were found. The correlation between China and cultivated land” was reliable and a close link was found between agricultural land” and the USA. The regional variations in cropland terminology can be influenced by multiple factors, including the degree of agricultural mechanization, colonial history, and migration patterns. This study reveals variations in cropland-related terminology across disciplines and regions. The results highlight the importance of standardizing cropland terminology to foster interdisciplinary research, improve data comparability, and support global agricultural and environmental policymaking.


Keywords:  cropland terminology       discipline variation       regional variation       standardization       agricultural research  
Online: 18 April 2025  
Fund: 

This research is supported by the National Key Research and Development Program of China (2023YFD2300501), the National Natural Science Foundation of China (41921001 and 42401440).

About author:  Gehui Jin, E-mail: jingehui1999@163.com; #Correspondence Yanbing Wei, E-mail: weiyanbing@caas.cn

Cite this article: 

Gehui Jin, Yanbing Wei#, Qiangyi Yu, Wenbin Wu. 2025. How do scientists use terminology related to cropland? Examining the disparity across disciplines and regions. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.020

Aliyev S. 2023. The evolution of terminology: Origins and advancements in western contexts. Norwegian Journal of development of the International Science, 119, 37-40.

Baur P, Iles A. 2022. Replacing humans with machines: historical look at technology politics in California agriculture. Agriculture and Human Values, 40, 113-140.

Bhargava P. 2023. Institutionalization of agricultural education in the nineteenth century colonial India: Its imperatives and models. Indian Journal of History of Science, 58, 129-143.

Bhargava P. 2024. Politics, industrialization and technical education in colonial India: A case study of imperial institute of sugar technology, Kanpur. Indian Journal of History of Science, 59, 165-177.

Chen Y L, Lu D S, Emilio M, Mateus B, Luciano V D, Ieda D S, Ramon F B S, Huang J F, Alfredo J B L, Maria A F O. 2018. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. International Journal of Applied Earth Observation and Geoinformation, 69,133-147.

Daum T. 2023. Mechanization and sustainable agri-food system transformation in the Global South. A review. Agronomy for Sustainable Development, 43, 16.

Edwards-Jones G. 2006. Modelling farmer decision-making: Concepts, progress and challenges. Animal Science, 82, 783-790.

Engman M M, King K A. 2022. Indigenous and immigrant languages in the US: Language contact, change, and survival. In: Salikoko M, Escobar A M, eds., The Cambridge Handbook of Language Contact. Volume 2: Multilingualism in Population Structure. Cambridge Handbooks in Language and Linguistics. Cambridge University Press. pp. 555-590.

Fawcett C. 1930. The extent of the cultivable land. The Geographical Journal76, 504-509.

Foley J A, Defries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K. 2005. Global consequences of land use. Science, 309, 570-574.

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O'Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337-342.

Go J. 2024, Reverberations of empire: How the colonial past shapes the present. Social Science History, 48, 1-18.

Haigh J. 1988. Applied multivariate statistical analysis. The Mathematical Gazette, 72, 331-332. 

Hansen M C, Potapov P V, Pickens A H, Tyukavina A, Hernández-Serna A, Zalles V, Turubanova S, Kommareddy I, Stehman S, Song X, Kommareddy A. 2021. Global land use extent and dispersion within natural land cover using Landsat data. Environmental Research Letters, 17, 034050.

Higgs N. 1991. Practical and innovative uses of correspondence analysis. The Statistician, 40, 183-194.

Huang J, Zhang S, Zhang J, Zheng X, Meng X, Yang S, Bai Y. 2024. Integrating meteorological and remote sensing data to simulate cropland nocturnal evapotranspiration using machine learning. Sustainability, 16, 198.

Huo C, Chen L. 2024. The impact of land transfer policy on sustainable agricultural development in China. Scientific Reports, 14, 7064.

Lam C. 2016. Correspondence analysis: A statistical technique ripe for technical and professional communication researchers. IEEE Transactions on Professional Communication, 59, 299-310. 

Lichtenberg E, Ding C. 2008. Assessing farmland protection policy in China. Land use policy, 25, 59-68.

Medková H, Vačkář D, Weinzettel J. 2017. Appropriation of potential net primary production by cropland in terrestrial ecoregions. Journal of Cleaner Production, 150, 294-300.

Meighan P J. 2022. Colonialingualism: Colonial legacies, imperial mindsets, and inequitable practices in English language education. Diaspora, Indigenous, and Minority Education, 17, 146-155.

Milczarek-Andrzejewska D, Zawalińska K, Czarnecki A. 2018. Land-use conflicts and the common agricultural policy: Evidence from Poland. Land Use Policy, 73, 423-433.

Murtagh F, Legendre P. 2014. Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, 31, 274–295.

Nenadić O, Greenacre M J. 2007. Correspondence analysis in R, with Two-and three-dimensional graphics: The ca package. Journal of Statistical Software, 20, 1-13.

Oliphant A J, Thenkabail P S, Teluguntla P G, Xiong J, Gumma M K, Congalton R G, Yadav K. 2019. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110-124. 

Potapov P, Turubanova S, Hansen M C, Tyukavina A, Zalles V, Khan A, Song X P, Pickens A, Shen Q, Cortez J. 2022. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food, 3, 19-28.

Schmidhuber J, Tubiello F N. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19703-19708.

Schneider J, Zabel F, Mauser W. 2022. Global inventory of suitable, cultivable and available cropland under different scenarios and policies. Scientific Data, 9, 527.

See L M, Fritz S, You L, Ramankutty N, Herrero M, Justice C O, Becker-Reshef I, Thornton P K, Erb K, Gong P, Tang H, Velde M V, Ericksen P, Mccallum I, Kraxner F, Obersteiner M. 2015. Improved global cropland data as an essential ingredient for food security. Global Food Security, 4, 37-45.

Singh B, Singh S, Meena H, Singh B. 2024. Agrarian transformations in British India: A case study of colonial Punjab. Sikh Formations, 20, 322336.

Thebo A, Drechsel P, Lambin E. 2014. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environmental Research Letters, 9, 114002.

Tubiello F N, Conchedda G, Casse L, Pengyu H, Zhongxin C, De Santis G, Fritz S, Muchoney D. 2023. Measuring the world's cropland area. Nature Food, 4, 30-32.

Tubiello F N, Wanner N, Asprooth L, Mueller M, Ignaciuk A, Khan A A, Rosero Moncayo J2021. Measuring progress towards sustainable agriculture. FAO Statistics Working Paper 21-24. Rome, FAO.

Viana C M, Freire D, Abrantes P, Rocha J, Pereira P. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of the Total Environment, 806, 150718. 

Waldner F, Fritz S, Gregorio A D, Defourny P. 2015. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sensing, 7, 7959-7986.

Wang Y, Hu X, Yu S, Wang Z, Zhao J, Fang N, Xiao H, Wang L and Shi Z. 2024. Soil conservation of sloping farmland in China: History, present, and future. Earth-Science Reviews, 249, 104655.

Ward Joe H. 1963. Hierarchical grouping to optimize an objective function. Publications of the American Statistical Association, 58, 236-244.

Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.

Wu W B, Yu Y, Peter V H, You L Z, Yang P, Tang H J. 2014. How could agricultural land systems contribute to raise food production under global change? Journal of Integrative Agriculture, 13, 1432-1442.

Xu F, Yao X, Zhang K, Yang H, Feng, Q, Li Y, Yan S, Gao B, Li S, Yang J, Zhang C, Lv Y, Zhu D, Ye S. 2024. Deep learning in cropland field identification: A review. Computers and Electronics in Agriculture, 222, 109042.

Yıldırım U, Başar E, Uğurlu Ö. 2019. Assessment of collisions and grounding accidents with human factors analysis and classification system (HFACS) and statistical methods. Safety Science, 119, 412-425.

Yu Q Y, Wu W B, Yang P, Li Z J, Xiong W, Tang H J. 2012. Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agriculture, Ecosystems & Environment, 156, 57-71.

Yu Q Y, You L Z, Ulrike W S, Ru Y T, Joglekar A K B, Fritz S, Xiong W, Lu M, Wu W B, Yang P. 2020. A cultivated planet in 2010-Part 2: The global gridded agricultural-production maps. Earth System Science Data, 12, 3545-3572.

Zhu Z, Woodcock C E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171.

No related articles found!
No Suggested Reading articles found!