Aliyev S. 2023. The evolution of terminology: Origins and advancements in western contexts. Norwegian Journal of development of the International Science, 119, 37-40.
Baur P, Iles A. 2022. Replacing humans with machines: A historical look at technology politics in California agriculture. Agriculture and Human Values, 40, 113-140.
Bhargava P. 2023. Institutionalization of agricultural education in the nineteenth century colonial India: Its imperatives and models. Indian Journal of History of Science, 58, 129-143.
Bhargava P. 2024. Politics, industrialization and technical education in colonial India: A case study of imperial institute of sugar technology, Kanpur. Indian Journal of History of Science, 59, 165-177.
Chen Y L, Lu D S, Emilio M, Mateus B, Luciano V D, Ieda D S, Ramon F B S, Huang J F, Alfredo J B L, Maria A F O. 2018. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. International Journal of Applied Earth Observation and Geoinformation, 69,133-147.
Daum T. 2023. Mechanization and sustainable agri-food system transformation in the Global South. A review. Agronomy for Sustainable Development, 43, 16.
Edwards-Jones G. 2006. Modelling farmer decision-making: Concepts, progress and challenges. Animal Science, 82, 783-790.
Engman M M, King K A. 2022. Indigenous and immigrant languages in the US: Language contact, change, and survival. In: Salikoko M, Escobar A M, eds., The Cambridge Handbook of Language Contact. Volume 2: Multilingualism in Population Structure. Cambridge Handbooks in Language and Linguistics. Cambridge University Press. pp. 555-590.
Fawcett C. 1930. The extent of the cultivable land. The Geographical Journal, 76, 504-509.
Foley J A, Defries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K. 2005. Global consequences of land use. Science, 309, 570-574.
Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O'Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337-342.
Go J. 2024, Reverberations of empire: How the colonial past shapes the present. Social Science History, 48, 1-18.
Haigh J. 1988. Applied multivariate statistical analysis. The Mathematical Gazette, 72, 331-332.
Hansen M C, Potapov P V, Pickens A H, Tyukavina A, Hernández-Serna A, Zalles V, Turubanova S, Kommareddy I, Stehman S, Song X, Kommareddy A. 2021. Global land use extent and dispersion within natural land cover using Landsat data. Environmental Research Letters, 17, 034050.
Higgs N. 1991. Practical and innovative uses of correspondence analysis. The Statistician, 40, 183-194.
Huang J, Zhang S, Zhang J, Zheng X, Meng X, Yang S, Bai Y. 2024. Integrating meteorological and remote sensing data to simulate cropland nocturnal evapotranspiration using machine learning. Sustainability, 16, 198.
Huo C, Chen L. 2024. The impact of land transfer policy on sustainable agricultural development in China. Scientific Reports, 14, 7064.
Lam C. 2016. Correspondence analysis: A statistical technique ripe for technical and professional communication researchers. IEEE Transactions on Professional Communication, 59, 299-310.
Lichtenberg E, Ding C. 2008. Assessing farmland protection policy in China. Land use policy, 25, 59-68.
Medková H, Vačkář D, Weinzettel J. 2017. Appropriation of potential net primary production by cropland in terrestrial ecoregions. Journal of Cleaner Production, 150, 294-300.
Meighan P J. 2022. Colonialingualism: Colonial legacies, imperial mindsets, and inequitable practices in English language education. Diaspora, Indigenous, and Minority Education, 17, 146-155.
Milczarek-Andrzejewska D, Zawalińska K, Czarnecki A. 2018. Land-use conflicts and the common agricultural policy: Evidence from Poland. Land Use Policy, 73, 423-433.
Murtagh F, Legendre P. 2014. Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, 31, 274–295.
Nenadić O, Greenacre M J. 2007. Correspondence analysis in R, with Two-and three-dimensional graphics: The ca package. Journal of Statistical Software, 20, 1-13.
Oliphant A J, Thenkabail P S, Teluguntla P G, Xiong J, Gumma M K, Congalton R G, Yadav K. 2019. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110-124.
Potapov P, Turubanova S, Hansen M C, Tyukavina A, Zalles V, Khan A, Song X P, Pickens A, Shen Q, Cortez J. 2022. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food, 3, 19-28.
Schmidhuber J, Tubiello F N. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104, 19703-19708.
Schneider J, Zabel F, Mauser W. 2022. Global inventory of suitable, cultivable and available cropland under different scenarios and policies. Scientific Data, 9, 527.
See L M, Fritz S, You L, Ramankutty N, Herrero M, Justice C O, Becker-Reshef I, Thornton P K, Erb K, Gong P, Tang H, Velde M V, Ericksen P, Mccallum I, Kraxner F, Obersteiner M. 2015. Improved global cropland data as an essential ingredient for food security. Global Food Security, 4, 37-45.
Singh B, Singh S, Meena H, Singh B. 2024. Agrarian transformations in British India: A case study of colonial Punjab. Sikh Formations, 20, 322–336.
Thebo A, Drechsel P, Lambin E. 2014. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environmental Research Letters, 9, 114002.
Tubiello F N, Conchedda G, Casse L, Pengyu H, Zhongxin C, De Santis G, Fritz S, Muchoney D. 2023. Measuring the world's cropland area. Nature Food, 4, 30-32.
Tubiello F N, Wanner N, Asprooth L, Mueller M, Ignaciuk A, Khan A A, Rosero Moncayo J. 2021. Measuring progress towards sustainable agriculture. FAO Statistics Working Paper 21-24. Rome, FAO.
Viana C M, Freire D, Abrantes P, Rocha J, Pereira P. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of the Total Environment, 806, 150718.
Waldner F, Fritz S, Gregorio A D, Defourny P. 2015. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sensing, 7, 7959-7986.
Wang Y, Hu X, Yu S, Wang Z, Zhao J, Fang N, Xiao H, Wang L and Shi Z. 2024. Soil conservation of sloping farmland in China: History, present, and future. Earth-Science Reviews, 249, 104655.
Ward Joe H. 1963. Hierarchical grouping to optimize an objective function. Publications of the American Statistical Association, 58, 236-244.
Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.
Wu W B, Yu Q Y, Peter V H, You L Z, Yang P, Tang H J. 2014. How could agricultural land systems contribute to raise food production under global change? Journal of Integrative Agriculture, 13, 1432-1442.
Xu F, Yao X, Zhang K, Yang H, Feng, Q, Li Y, Yan S, Gao B, Li S, Yang J, Zhang C, Lv Y, Zhu D, Ye S. 2024. Deep learning in cropland field identification: A review. Computers and Electronics in Agriculture, 222, 109042.
Yıldırım U, Başar E, Uğurlu Ö. 2019. Assessment of collisions and grounding accidents with human factors analysis and classification system (HFACS) and statistical methods. Safety Science, 119, 412-425.
Yu Q Y, Wu W B, Yang P, Li Z J, Xiong W, Tang H J. 2012. Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agriculture, Ecosystems & Environment, 156, 57-71.
Yu Q Y, You L Z, Ulrike W S, Ru Y T, Joglekar A K B, Fritz S, Xiong W, Lu M, Wu W B, Yang P. 2020. A cultivated planet in 2010-Part 2: The global gridded agricultural-production maps. Earth System Science Data, 12, 3545-3572.
Zhu Z, Woodcock C E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171.
|