Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The Protective effects of a live-attenuated genotype I Japanese Encephalitis Vaccine in mice and boars

Hailong Zhang1,2*, Xin Wang1*Yan Zhang1, Junjie Zhang1, Zongjie Li1, Ke Liu1, Beibei Li1, Donghua Shao1, Yafeng Qiu1, Juxiang Liu2#, Zhiyong Ma1#, Jianchao Wei1#

1 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2 College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China

 Highlights 

1. SD12-F120 induces high levels of neutralizing antibodies in both mice and boars.

2. SD12-F120 effectively preventing JEV-induced orchitis in boars.

3. SD12-F120 offers complete protection against genotype I JEV virulent, which is a promising live-attenuated vaccine candidate of GI JEV.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

日本脑炎(Japanese encephalitis, JE)是由日本脑炎病毒(Japanese encephalitis virus, JEV)引起的一种蚊媒人畜共患病毒病。JEV可引起母猪流产和公猪睾丸炎。疫苗接种仍然是预防和控制该疾病的最有效策略。研究表明,近年来基因I型GIJEV已取代了基因III型(GIII)JEV成为优势基因型。然而,目前商品化JE疫苗均是GIII JEV毒株,包括广泛使用的减毒活疫苗SA14-14-2而且GIII JEV疫苗针对GI毒株攻击不能提供完全的免疫保护。本研究在小鼠和公猪模型上进行了GI JEV减毒活疫苗株(SD12-F120)免疫攻毒保护试验,以评估相同基因型JEV强毒攻击的免疫保护效果。该疫苗接种小鼠后可诱导针对GI JEV毒株SD12)高水平的中和抗体,GI型JEV强毒株(SD12)击提供完全保护。SD12-F120免疫的公猪血液、口鼻拭子和睾丸中未检测到病毒,诱导针对GI强毒株(SD12中和抗体滴度达164。组织病理学分析显示,SD12-F120免疫组的公猪在攻毒后睾丸间质细胞和各阶段的精原细胞未发生病变。结果表明,减毒活疫苗SD12-F120GIGI型JEV强毒株(SD12)提供了完全保护,可有效预防睾丸炎发生由此可见, SD12-F120GI是一种有前景的减毒活疫苗候选株,可用于控制GI 型JEV的传播。

 



Abstract  

Japanese encephalitis (JE) is a zoonotic mosquito-borne viral disease caused by the Japanese encephalitis virus (JEV). The virus is transmitted among adult pigs, causing abortion in sows and orchitis in boars. Vaccination remains the most effective strategy for the prevention and control of this disease. Studies have shown that genotype I (GI) JEV has replaced GIII JEV as the dominant strain in many Asian countries. However, all currently licensed JE vaccines, including the widely used SA14-14-2 live attenuated vaccine, are derived from the GIII strain. It has been reported that GIII-based vaccines do not provide complete protection against the GI strain. In this study, we conducted vaccination-challenge protection assays in mice and boars to evaluate the protective efficacy of live attenuated GI (SD12-F120) derived vaccines against challenge by a homologous genotypeIn mice, immunisation with the vaccine induced a potent viral-neutralising response against the homologous GI JEV SD12 strain. The SD12-F120 vaccine provided complete protection against lethal challenge by SD12, whilst also attenuating viraemia. JEV was not detected in the blood, oronasal swabs, or testicles of boars receiving the SD12-F120 vaccine. Vaccination induced high levels of neutralising antibodies against the homologous GI strain in boars, with titers as high as 64. Histopathological analysis showed that interstitial cells of the boar testis and spermatogonia at all levels were well preserved in the vaccine-immunised group, effectively suppressing the occurrence of orchitis. These results showed that the SD12-F120 vaccine provides boars complete protection against challenge by SD12, whilst also protecting against viraemia and testicular damage. Our findings indicate that SD12-F120 is a promising live-attenuated vaccine candidate for controlling the spread of GI JEV.

Keywords:  Japanese encephalitis virus       genotype Ⅰ      attenuated live vaccine       neutralizing antibodies       swine testis inflammation  
Online: 18 April 2025  
Fund: 

The study was supported by the Natural Science Foundation of China (32473021), the Natural Science Foundation of Shanghai (24ZR1479500), the National Key Research and Development Program of China (2022YFD1800801), the Project of Shanghai Science and Technology Commission (22N41900400), the Shanghai Municipal Science and Technology Major Project (ZD2021CY001), the Central Public-interest Scientific Institution Basal Research Fund (2024JB03) and the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202203.

About author:  #Correspondence Jianchao Wei, Tel: +86-21-34293040, E-mail: jianchaowei@shvri.ac.cn; Zhiyong Ma, Tel: +86-21-34293139, E-mail: zhiyongma@shvri.ac.cn; Juxiang Liu, Tel: +86-312-7520278, E-mail: dkljx@hebau.edu.cn * Hailong Zhang and Xin Wang contributed equally to this article.

Cite this article: 

Hailong Zhang, Xin Wang, Yan Zhang, Junjie Zhang, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Yafeng Qiu, Juxiang Liu, Zhiyong Ma, Jianchao Wei. 2025. The Protective effects of a live-attenuated genotype I Japanese Encephalitis Vaccine in mice and boars. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.019

Anwar M N, Guo S, Xin W, Hameed M, Wahaab A, Ma X C, Khan A U, Rahman S U,

Shao D H, Li Z J, Liu K, Li B B, Qiu Y F, Ma Z Y, Wei J C. 2021. Adaptation of a

live-attenuated genotype I Japanese encephalitis virus to vero cells is associated with mutations in structural protein genes. Virus Research, 292, 198256.

Anwar M N, Wang X, Hameed M, Wahaab A, Li C X, Sharma M, Pang L L, Malik M

I, Liu K, Li B B, Qiu Y F, Wei J C, Ma Z Y. 2020. Phenotypic and genotypic comparison of a live-attenuated genotype I Japanese encephalitis virus SD12-F120 strain with its virulent parental SD12 strain. Viruses-Basel, 12, 552.

Barzon L, Palu G. 2018. Recent developments in vaccines and biological therapies

against Japanese encephalitis virus. Expert Opinion on Biological Therapy, 18, 851-864.

Beasley D W C, Lewthwaite P, Solomon T. 2008. Current use and development of

vaccines for Japanese encephalitis. Expert Opinion on Biological Therapy, 8, 95-106.

Campbell G L, Hills S L, Fischer M, Jacobson J A, Hoke C H, Hombach J M, Marfin

A A, Solomon T, Tsai T F, Tsu V D, Ginsburg A S. 2011. Estimated global incidence of Japanese encephalitis: a systematic review. The Bulletin of the World Health Organization, 89, 766-774.

Cao L, Fu S H, Gao X Y, Li M H, Cui S H, Li X L, Cao Y X, Lei W W, Lu Z, He Y,

Wang H Y, Yan J H, Gao G F, Liang G D. 2016. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. Plos Neglected Tropical Diseases, 10, e0004686.

Chambers T J, Nestorowicz A, Mason P W, Rice C M. 1999. Yellow fever/Japanese

encephalitis chimeric viruses: construction and biological properties. Journal of Virology, 73, 3095-3101.

Chiou S S, Chen J M, Chen Y Y, Chia M Y, Fan Y C. 2021. The feasibility of field

collected pig oronasal secretions as specimens for the virologic surveillance of Japanese encephalitis virus. Plos Neglected Tropical Diseases15, e0009977.

Cleton N B, Bosco-Lauth A, Page M J, Bowen R A. 2014. Age-related susceptibility

to Japanese encephalitis virus in domestic ducklings and chicks. American Journal of Tropical Medicine and Hygiene90, 242-246.

Di D, Li C X, Zhang J J, Hameed M, Wang X, Xia Q Q, Li H, Xi S M, Li Z J, Liu K,

Li B B, Shao D H, Qiu Y F, Wei J C, Ma Z Y. 2020. Experimental infection of newly hatched domestic ducklings via Japanese encephalitis virus infected mosquitoes. Pathogens9, 371.

Duong V, Choeung R, Gorman C, Laurent D, Crabol Y, Mey C, Peng B, Di Francesco

J, Hul V, Sothy H, Santy K, Richner B, Pommier J D, Sorn S, Chevalier V, Buchy P, de Lamballerie X, Cappelle J, Horwood P F, Dussart P. 2017. Isolation and full-genome sequences of Japanese encephalitis virus genotype I strains from Cambodian human patients, mosquitoes and pigs. Journal of General Virology98, 2287-2296.

Fan Y C, Chen J M, Chen Y Y, Lin J W, Chiou S S. 2013. Reduced neutralizing

antibody titer against genotype I virus in swine immunized with a live-attenuated genotype III Japanese encephalitis virus vaccine. Veterinary Microbiology, 163, 248-256.

Fan Y C, Chen J M, Chiu H C, Chen Y Y, Lin J W, Shih C C, Chen C M, Chang C C,

Chang G J J, Chiou S S. 2012. Partially neutralizing potency against emerging genotype I virus among children received for malin inactivated Japanese encephalitis virus Vaccine. Plos Neglected Tropical Diseases, 6, e1834

Fan Y C, Chen J M, Lin J W, Chen Y Y, Wu G H, Su K H, Chiou M T, Wu S R, Yin J

H, Liao J W, Chang G J J, Chiou S S. 2018. Genotype I of Japanese encephalitis virus virus-like particles elicit sterilizing immunity against genotype I and III viral challenge in swine. Scientific Reports8,7481 

Fan Y C, Liang J J, Chen J M, Lin J W, Chen Y Y, Su K H, Lin C C, Tu W C, Chiou

M T, Ou S C, Chang G J J, Lin Y L, Chiou S S. 2019. NS2B/NS3 mutations enhance the infectivity of genotype I Japanese encephalitis virus in amplifying hosts. PLoS Pathogens, 15, e1007992.

Geiss B J, Stahla H, Hannah A M, Gari H H, Keenan S M. 2009. Focus on

flaviviruses: current and future drug targets. Future Medicinal Chemistry1, 327-344.

Guirakhoo F, Zhang Z X, Chambers T J, Delagrave S, Arroyo J, Barrett A D T,

Monath T P. 1999. Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever Japanese encephalitis virus (ChimeriVax-JE) as  a live, attenuated vaccine candidate against Japanese encephalitis. Virology257, 363-372.

Guy B, Guirakhoo F, Barban V, Higgs S, Monath T P, Lang J. 2010. Preclinical and

clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine28, 632-649.

Halstead S B, Thomas S J. 2011. New Japanese encephalitis vaccines: alternatives to

production in mouse brain. Expert Review of Vaccines, 10, 355-364.

Hameed M, Liu K, Anwar M N, Wahaab A, Safdar A, Di D, Boruah P, Xu J P, Wang

X, Li B B, Zhu H M, Nawaz M, Shao D H, Qiu Y F, Wei J C, Ma Z Y. 2019. The emerged genotype I of Japanese encephalitis virus shows an infectivity similar to genotype III in mosquitoes from China. Plos Neglected Tropical Diseases, 13, e0007716.

Konishi E, Ajiro N, Nukuzuma C, Mason P W, Kurane I. 2003. Comparison of

protective efficacies of plasmid DNAs encoding Japanese encephalitis virus proteins that induce neutralizing antibody or cytotoxic T lymphocytes in mice. Vaccine, 21, 3675-3683.

Lindsey N P, Staples J E, Jones J F, Sejvar J J, Griggs A, Iskander J, Miller E R,

Fischer M. 2010. Adverse event reports following Japanese encephalitis vaccination in the United States, 1999-2009. Vaccine29, 58-64.

Liu W J, Fu S H, Ma X M, Chen X J, Wu D, Zhou L W, Yin Q K, Li F, He Y, Lei W

W, Li Y X, Xu S T, Wang H Q, Wang Z H, Wang H Y, Yu H, Liang G D. 2020. An outbreak of Japanese encephalitis caused by genotype Ib Japanese encephalitis virus in China, 2018: a laboratory and field investigation. Plos Neglected Tropical Diseases, 14, e0008312.

Luca V C, AbiMansour J, Nelson C A, Fremont D H. 2012. Crystal structure of the

Japanese encephalitis virus envelope protein. Journal of Virology, 86, 2337-2346.

McLean R K, Graham S P. 2022. The pig as an amplifying host for new and emerging zoonotic viruses. One Health, 14, 100384.

Monath T P, Soike K, Levenbook I, Zhang Z X, Arroyo J, Delagrave S, Myers G,

Barrett A D T, Shope R E, Ratterree M, Chambers T J, Guirakhoo F. 1999. Recombinant, chimaeric live, attenuated vaccine (ChimeriVax™) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in nonhuman primates. Vaccine17, 1869-1882.

Muller D A, Young P R. 2013. The flavivirus NS1 protein: Molecular and structural

biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Research, 98, 192-208.

Ooi M H, Lewthwaite P, Lai B F, Mohan A, Clear D, Lim L, Krishnan S, Preston T,

Chieng C H, Tio P H, Wong S C, Cardosa J, Solomon T. 2008. The epidemiology, clinical features, and long-term prognosis of Japanese encephalitis in central sarawak, malaysia, 1997-2005. Clinical Infectious Diseases, 47, 458-468.

Pan X L, Liu H, Wang H Y, Fu S H, Liu H Z, Zhang H L, Li M H, Gao X Y, Wang J

L, Sun X H, Lu X J, Zhai Y G, Meng W S, He Y, Wang H Q, Han N, Wei B, Wu Y G, Feng Y, Yang D J, Wang L H, Tang Q, Xia G L, Kurane I, Rayner S, Liang G D. 2011. Emergence of Genotype I of Japanese Encephalitis Virus as the Dominant Genotype in Asia. Journal of Virology85, 9847-9853.

Pearce J C, Learoyd T P, Langendorf B J, Logan J G. 2018. Japanese encephalitis: the

vectors, ecology and potential for expansion. The Journal of Travel Medicine25, S16-S26.

Pierson T C, Diamond M S. 2020. The continued threat of emerging flaviviruses.

Nature Microbiology, 5, 796-812.

Plesner A M, Ronne T, Wachmann H. 2000. Case-control study of allergic reactions to

Japanese encephalitis vaccine. Vaccine, 18, 1830-1836.

Ricklin M E, Garcia-Nicolas O, Brechbuhl D, Python S, Zumkehr B, Nougairede A,

Charrel R N, Posthaus H, Oevermann A, Summerfield A. 2016. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nature Communications, 7, 10832.

Sampath A, Padmanabhan R. 2009. Molecular targets for flavivirus drug discovery.

Antiviral Research81, 6-15.

Sun Y, Ding H, Zhao F, Yan Q, Li Y, Niu X, Zeng W, Wu K, Ling B, Fan S, Zhao M,

Yi L, Chen J. 2022. Genomic characteristics and E protein bioinformatics analysis of JEV isolates from south China from 2011 to 2018. Vaccines (Basel), 10, 1303.

Tang Q W, Deng Z F, Tan S G, Song G, Zhang H, Ge L R. 2022. Prevalence and

Genetic Characteristics of Japanese Encephalitis Virus among Mosquitoes and Pigs in Hunan Province, China from 2019 to 2021. Journal of Microbiology and Biotechnology32, 1120-1125.

Teng M, Luo J, Fan J M, Chen L, Wang X T, Yao W, Wang C Q, Zhang G P. 2013.

Molecular characterization of Japanese encephalitis viruses circulating in pigs and mosquitoes on pig farms in the Chinese province of Henan. Virus Genes46, 170-174.

Tiroumourougane S V, Raghava P, Srinivasan S. 2002. Japanese viral encephalitis.

Postgraduate Medical Journal78, 205-215.

Unni S K, Ruzek D, Chhatbar C, Mishra R, Johri M K, Singh S K. 2011. Japanese

encephalitis virus: from genome to infectome. Microbes and Infection13, 312-321.

Van den Hurk A F, Ritchie S A, Mackenzie J S. 2009. Ecology and Geographical

Expansion of Japanese Encephalitis Virus. Annual Review of Entomology54, 17-35.

Waggoner J J, Gresh L, Vargas M J, Ballesteros G, Tellez Y, Soda K J, Sahoo M K,

Nunez A, Balmaseda A, Harris E, Pinsky B A. 2016. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clinical Infectious Diseases, 63, 1584-1590.

Wei J, Hameed M, Wang X, Zhang J, Guo S, Anwar M N, Pang L, Liu K, Li B, Shao

D, Qiu Y, Zhong D, Zhou B, Ma Z. 2020. Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Research174, 104673.

Wei J C, Wang X, Zhang J J, Guo S, Pang L L, Shi K, Liu K, Shao D H, Qiu Y F, Liu

L H, Widén F, Li B B, Ma Z Y. 2019. Partial cross-protection between Japanese encephalitis virus genotype I and III in mice. Plos Neglected Tropical Diseases13, e0007601.

Wilder-Smith A, Halstead S B. 2010. Japanese encephalitis: update on vaccines and

vaccine recommendations. Current Opinion in Infectious Diseases23, 426-431.

Xia Q Q, Zhang Y, Yang Y, Ma X C, Guan Z X, Zhang J J, Li Z J, Liu K, Li B B,

Shao D H, Qiu Y F, Wei J C, Ma Z Y. 2022. Virulence and cross protection conferred by an attenuated genotype I based chimeric Japanese encephalitis virus strain harboring the E protein of genotype V in mice. Microbiology Spectrum10, e0199022.

Xiao C G, Li C X, Di D, Cappelle J, Liu L H, Wang X, Pang L L, Xu J P, Liu K, Li B

B, Shao D H, Qiu Y F, Ren W J, Widen F, Chevalier V, Wei J C, Wu X D, Ma Z Y. 2018. Differential replication efficiencies between Japanese encephalitis virus genotype I and III in avian cultured cells and young domestic ducklings. Plos Neglected Tropical Diseases12, e0007046.

Yang Y, Liang N X, Tan Y, Xie Z C. 2016. Epidemiological trends and characteristics

of Japanese encephalitis changed based on the vaccination program between 1960 and 2013 in Guangxi Zhuang Autonomous Region, southern China. International Journal of Infectious Diseases45, 135-138.

Yu Y X. 2010. Phenotypic and genotypic characteristics of Japanese encephalitis

attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine, 28, 3635-3641.

Yun S I, Lee Y M. 2014. Japanese encephalitis The virus and vaccines. Human

Vaccines & Immunotherapeutics10, 263-279.

Zhang Y, Li Y H, Guan Z X, Yang Y, Zhang J J, Sun Q, Li B B, Qiu Y F, Liu K, Shao

D H, Ma Z Y, Wei J C, Li P. 2022. Rapid differential detection of Japanese encephalitis virus and getah virus in pigs or mosquitos by a duplex TaqMan real-time RT-PCR assay. Frontiers in Veterinary Science9, 839443.

Zhang Y P, Jing J, Li X F, Wang J M, Feng X L, Cao R B, Chen P Y. 2015. Integration

analysis of miRNA and mRNA expression profiles in swine testis cells infected with Japanese encephalitis virus. Infection Genetics and Evolution, 32, 342-347.

Zheng B H, Wang X G, Liu Y X, Li Y C, Long S W, Gu C Q, Ye J, Xie S S, Cao S B.

2019. Japanese encephalitis virus infection induces inflammation of swine testis through RIG-I-NF-κB signaling pathway. Veterinary Microbiology238, 108430.

Zheng Y Y, Li M H, Wang H Y, Liang G D. 2012. Japanese encephalitis and Japanese

encephalitis virus in mainland China. Reviews in Medical Virology22, 301-322. 

No related articles found!
No Suggested Reading articles found!