Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
ScD27.2 gene regulation mechanism during sugarcane tillering and growth

Zhuandi Wu1, 2, Xin Hu1, 2,  Wenzhi Wang3, Zhengying Luo1, 2, Naveed ur Rehman1, 2, Peifang Zhao1, 2, Jiayong Liu1, 2,  Shuzhen Zhang3,  Fenggang Zan1, 2#, Xinlong Liu1, 2#, Jiawen Guo1, 2#

1 National Key Laboratory for Biological Breeding of Tropical Crops Ministry of Science and Technology, Kunming 650205, China

2 Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China

3 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

分蘖数是决定甘蔗(Saccharum spp. hybrids)产量的关键农艺性状。独脚金内酯(Strigolactones, SLs)作为植物激素,对株型建成具有重要调控作用。DWARF27D27)是SL生物合成途径中的关键酶,可催化类胡萝卜素的可逆异构化反应。甘蔗D27同源基因ScD27.2的启动子区含有非生物胁迫响应元件,提示其在SL生物合成与胁迫应答中具有重要作用,可能通过调控分蘖数等性状影响甘蔗产量。阐明其调控机制将为培育高产、抗逆甘蔗新品种提供理论依据。本研究通过RNA干扰(RNAi)和过表达(OE)技术对甘蔗品种新台糖22号(XTT22)中关键胡萝卜素异构酶基因ScD27.2进行遗传调控。结果显示:与野生型相比,ScD27-RNAi-2株系的ScD27.2表达量显著降低,分蘖数显著增加;而ScD27-OE-1ScD27-OE-5ScD27-OE-9株系的基因表达量显著升高,分蘖数显著减少。其中ScD27-OE-9株系侧芽萌发明显受抑,而ScD27-RNAi-2株系耐旱性显著降低。在正常光温水管理条件下,转基因植株的分蘖数和株高均呈现显著差异。长期干旱胁迫下,ScD27-RNAi-2株系的株高显著低于野生型和ScD27-OE-9株系,呈现矮化多蘖表型。进一步检测发现ScD27-RNAi-2株系的SLs含量显著下降。本研究推测ScD27.2通过调控甘蔗分蘖数响应干旱胁迫,且干旱相关转录因子ScMYB44可能参与ScD27.2对干旱胁迫的应答过程。

 



Abstract  

The tiller number is a pivotal agronomic trait determining sugarcane (Saccharum spp. hybrids) yield. Strigolactones (SLs), as plant hormones, regulate plant architecture. DWARF27 (D27), a crucial enzyme in the SL biosynthetic pathway, catalyzes a reversible isomerization reaction. ScD27.2, the D27 homolog in sugarcane, harbors abiotic stress-responsive elements in its promoter, suggesting its significance in SL biosynthesis and stress tolerance. ScD27.2 may optimize sugarcane agronomic traits, particularly the tiller number and yield. Elucidating its mechanisms will facilitate the development of high-yielding, stress-tolerant sugarcane varieties. To study the role of D27 in sugarcane tillering, we silenced (via RNA interference (RNAi)) and overexpressed (OE) the key carotene isomerase gene ScD27.2 in sugarcane cultivar XTT22 plantlets. ScD27.2 expression decreased, and the tiller number increased in ScD27-RNAi-2 sugarcane compared with wild-type XTT22. ScD27.2 expression increased, and the tiller number decreased in ScD27-OE-1, ScD27-OE-5, and ScD27-OE-9 lines compared with wild-type XTT22. ScD27-OE-9 showed obvious lateral bud germination, while ScD27-RNAi-2 showed decreased drought tolerance. The tiller number and plant height of transgenic sugarcane plants differed significantly under normal light and water management conditions. Under long-term drought, the height of ScD27-RNAi-2 was significantly lower than that of wild-type XTT22 and ScD27-OE-9, exhibiting a dwarf, multi-tiller phenotype. Moreover, the SLs content in ScD27-RNAi-2 decreased significantly. We speculate that ScD27.2 regulates the tiller number of sugarcanes under drought stress, and the drought-related transcription factor ScMYB44 might be involved in the response of ScD27.2 to drought stress.

Keywords:  DWARF27       carotene isomerase       drought stress response       strigolactone biosynthesis       tillering  
Online: 18 April 2025  
Fund: 

This project was funded by Regional Project of the National Natural Science Foundation of China (No. 31860405); National Key Laboratory for Tropical Crop Breeding (No. NKLTCB-YAAS-2024-S05); Yunnan Provincial Modern Agricultural Technology System; Yunnan Provincial Science and Technology Innovation Talent Program (Grant No. 202305AD160041);  Yunnan Provincial Xingdian Talent Support Program; Yunnan Haizhi Station for Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences (HHZ202201); Yunnan Provincial Key Research and Development Program - “Zhihui Yunnan” (Project No. 202403AM140025). 

About author:  Zhuandi Wu, E-mail: judith1123@126.com; #Correspondence Fenggang Zan, E-mail: fengang88@126.com; Xinlong Liu, E-mail: lxlgood868@163.com; Jiawen Guo, E-mail: 79jwguo@163.com.

Cite this article: 

Zhuandi Wu, Xin Hu, Wenzhi Wang, Zhengying Luo, Naveed ur Rehman, Peifang Zhao, Jiayong Liu, Shuzhen Zhang, Fenggang Zan, Xinlong Liu, Jiawen Guo. 2025. ScD27.2 gene regulation mechanism during sugarcane tillering and growth. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.017

Abuauf H, Haider I, Jia K P, Ablazov A, Mi J, Blilou I, Al-Babili S. 2018. The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-beta-carotene isomerase  and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science, 277, 33-42.

Aitken K S, Hermann S, Karno K, Bonnett G D, Mcintyre L C, Jackson P A. 2008. Genetic control of yield related stalk traits in sugarcane. Theoretical and Applied Genetics, 117, 1191-1203.

Al-Babili S, Bouwmeester H J. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66, 161-186.

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The Path from  -Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 335, 1348-1351.

Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.

Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester H J, Lopez-Raez J A. 2015. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 394, 1-19.

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant Journal, 51, 1019-1029.

Aroca R, Ruiz-Lozano J M, Zamarreño Á M, Paz J A, García-Mina J M, Pozo M J, López-Ráez J A. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170, 47-55.

Bari V K, Nassar J A, Aly R. 2021. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato  confers resistance to root parasitic weed Phelipanche aegyptiaca. Scientific Reports, 11, 3905.

Batra R, Agarwal P, Tyagi S, Saini D K, Kumar V, Kumar A, Kumar S, Balyan H S, Pandey R, Gupta P K. 2019. A study of CCD8 genes/proteins in seven monocots and eight dicots. Plos One, 14, e0213531.

Bharti N, Tripathi S, Bhatla S C. 2015. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth. Plant Signaling & Behavior, 10, e1049792.

Bohorova N, Zhang W, Julstrom P, Mclean S, Luna B, Brito R M, Diaz L, Ramos M E, Estanol P, Pacheco M, Salgado M, Hoisington D. 1999. Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theoretical and Applied Genetics, 99, 437-444.

Bonneau L, Huguet S, Wipf D, Pauly N, Truong H N. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188-202.

Brewer P B, Koltai H, Beveridge C A. 2013. Diverse roles of strigolactones in plant development. Molecular Plant, 6, 18-28.

Bruno M, Al-Babili S. 2016. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta, 243, 1429-1440.

Cao X, Liu Q, Rowland L J, Hammerschlag F A. 1998. GUS expression in blueberry (Vaccinium spp.): factors influencing Agrobacterium-mediated gene transfer efficiency. Plant Cell Reports, 18, 266-270.

Cheng X, Flokova K, Bouwmeester H, Ruyter-Spira C. 2017. The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants. Frontiers in Plant Science, 8, 392.

Cheng X, Ruyter-Spira C, Bouwmeester H. 2013. The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 4, 199.

Cooper J W, Hu Y, Beyyoudh L, Yildiz D H, Kunert K, Beveridge C A, Foyer C H. 2018. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell and Environment, 41, 1298-1310.

Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalska M A, Leyser O. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137, 2905-2913.

Czarnecki O, Yang J, Wang X, Wang S, Muchero W, Tuskan G A, Chen J G. 2014. Characterization of MORE AXILLARY GROWTH genes in Populus. Plos One, 9, e102757.

Czarnecki O, Yang J, Weston D J, Tuskan G A, Chen J G. 2013. A dual role of strigolactones in phosphate acquisition and utilization in plants. International Journal of Molecular Sciences, 14, 7681-7701.

de Abreu L G F, Grassi M C B, de Carvalho L M, Da Silva J J B, Oliveira J V C, Bressiani J A, Pereira G A G. 2020. Energy cane vs sugarcane: Watching the race in plant development. Industrial Crops and Products, 156, 112868.

De Smet I, Signora L, Beeckman T, Inze D, Foyer C H, Zhang H. 2003. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant Journal, 33, 543-555.

Delaux P M, Xie X, Timme R E, Puech-Pages V, Dunand C, Lecompte E, Delwiche C F, Yoneyama K, Becard G, Sejalon-Delmas N. 2012. Origin of strigolactones in the green lineage. New Phytologist, 195, 857-871.

Dias H B, Sentelhas P C. 2018. Sugarcane yield gap analysis in Brazil - A multi-model approach for determining  magnitudes and causes. Science of the Total Environment, 637-638, 1127-1136.

Dierck R, De Keyser E, De Riek J, Dhooghe E, Van Huylenbroeck J, Prinsen E, Van Der Straeten D. 2016. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum. Plos One, 11, e0161732.

Dun E A, Hanan J, Beveridge C A. 2009. Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell, 21, 3459-3472.

Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell, 17, 464-474.

Foo E, Yoneyama K, Hugill C J, Quittenden L J, Reid J B. 2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant, 6, 76-87.

Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North H M, Marion-Poll A. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant Journal, 70, 501-512.

Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J, Letisse F, Matusova R, Danoun S, Portais J, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. 2008. Strigolactone inhibition of shoot branching. Nature, 455, 189-194.

Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt  stress. Proceedings of the National Academy of Sciences of the United States of America, 111, 851-856.

Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Flokova K, Abuauf H, Ntui V O, Guo X, Charnikhova T, Al-Babili S, Bouwmeester H J, Ruyter-Spira C. 2018. The interaction of strigolactones with abscisic acid during the drought response  in rice. Journal of Experimental Botany, 69, 2403-2414.

Hauser R, Pech M, Kijek J, Yamamoto H, Titz B, Naeve F, Tovchigrechko A, Yamamoto K, Szaflarski W, Takeuchi N, Stellberger T, Diefenbacher M E, Nierhaus K H, Uetz P. 2012. RsfA (YbeB) proteins are conserved ribosomal silencing factors. Plos Genetics, 8, e1002815.

Hemaprabha G, Mohanraj K, Jackson P A, Lakshmanan P, Ali G S, Li A M, Huang D L, Ram B. 2022. Sugarcane Genetic Diversity and Major Germplasm Collections. Sugar Tech, 24, 279-297.

Hirayama T, Shinozaki K. 2007. Perception and transduction of abscisic acid signals: keys to the function of the  versatile plant hormone ABA. Trends in Plant Science, 12, 343-351.

Iyer-Pascuzzi A S, Jackson T, Cui H, Petricka J J, Busch W, Tsukagoshi H, Benfey P N. 2011. Cell identity regulators link development and stress responses in the Arabidopsis root. Developmental Cell, 21, 770-782.

Jia K P, Luo Q, He S B, Lu X D, Yang H Q. 2014. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Molecular Plant, 7, 528-540.

Johnson X, Brcich T, Dun E A, Goussot M, Haurogne K, Beveridge C A, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiology, 142, 1014-1026.

Kandel R, Yang X, Song J, Wang J. 2018. Potentials, Challenges, and Genetic and Genomic Resources for Sugarcane Biomass  Improvement. Frontiers in Plant Science, 9, 151.

Kapulnik Y, Koltai H. 2014. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology, 166, 560-569.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance  and usability. Molecular Biology and Evolution, 30, 772-780.

Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Dor B B, Resnick N, Wininger S, Kapulnik Y. 2011. Light is a positive regulator of strigolactone levels in tomato roots. Journal of Plant Physiology, 168, 1993-1996.

Krishna R S, Finlayson S A. 2014. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling. Plant Physiology, 164, 1542-1550.

Li J, Zhao S, Yu X, Du W, Li H, Sun Y, Sun H, Ruan C. 2021. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiology and Biochemistry, 162, 410-420.

Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 21, 1512-1525.

Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester H J, Lovisolo C, Cardinale F. 2015. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 241, 1435-1451.

Liu W, Kohlen W, Lillo A, Op D C R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 23, 3853-3865.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.

Lofton J, Tubana B S, Kanke Y, Teboh J, Viator H, Dalen M. 2012. Estimating sugarcane yield potential using an in-season determination of  normalized difference vegetative index. Sensors, 12, 7529-7547.

Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 178, 863-874.

Lucido A, Basallo O, Sorribas A, Marin-Sanguino A, Vilaprinyo E, Alves R. 2022. A mathematical model for strigolactone biosynthesis in plants. Frontiers in Plant Science, 13, 979162.

Mach J. 2015. Strigolactones Regulate Plant Growth in Arabidopsis via Degradation of the DWARF53-Like Proteins SMXL6, 7, and 8. Plant Cell, 27, 3022-3023.

Marzec M. 2017. Strigolactones and Gibberellins: A New Couple in the Phytohormone World? Trends in Plant Science, 22, 813-815.

Marzec M, Muszynska A. 2015. In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of Strigolactones in plants. International Journal of Molecular Sciences, 16, 6757-6782.

Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer P B, Beveridge C A, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H. 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiology, 160, 1329-1341.

Mayzlish-Gati E, Lekkala S P, Resnick N, Wininger S, Bhattacharya C, Lemcoff J H, Kapulnik Y, Koltai H. 2010. Strigolactones are positive regulators of light-harvesting genes in tomato. Journal of Experimental Botany, 61, 3129-3136.

Meena M R, Appunu C, Arun K R, Manimekalai R, Vasantha S, Krishnappa G, Kumar R, Pandey S K, Hemaprabha G. 2022. Recent Advances in Sugarcane Genomics, Physiology, and Phenomics for Superior  Agronomic Traits. Frontiers in Genetics, 13, 854936.

Mostofa M G, Li W, Nguyen K H, Fujita M, Tran L P. 2018. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell and Environment, 41, 2227-2243.

Murashige T, Skoog F. 1962. Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiologia Plantarum, 1, 473-497.

Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. 2018. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Reports, 37, 1049-1060.

Omoarelojie L O, Kulkarni M G, Finnie J F, Van Staden J. 2019. Strigolactones and their crosstalk with other phytohormones. Annals of Botany.

Pan X, Zheng H, Zhao J, Xu Y, Li X. 2016. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta, 243, 1407-1418.

Pandey A, Sharma M, Pandey G K. 2016. Emerging Roles of Strigolactones in Plant Responses to Stress and Development. Frontiers in Plant Science, 7, 434.

Pena J T, Sohn-Lee C, Rouhanifard S H, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M, Tuschl T. 2009. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nature Methods, 6, 139-141.

Persak H, Pitzschke A. 2014. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. International Journal of Molecular Sciences, 15, 2517-2537.

Raja V, Qadir S U, Kumar N, Alsahli A A, Rinklebe J, Ahmad P. 2023. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiology and Biochemistry, 201, 107872.

Rasmussen A, Depuydt S, Goormachtig S, Geelen D. 2013. Strigolactones fine-tune the root system. Planta, 238, 615-626.

Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester H J, Visser R G, Bachem C W. 2012. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 63, 4539-4547.

Ruiz-Lozano J M, Aroca R, Zamarreño Á M, Molina S, Andreo-Jiménez B, Porcel R, García-Mina J M, Ruyter-Spira C, López-Ráez J A. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment, 39, 441-452.

Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science, 18, 72-83.

Saeed W, Naseem S, Ali Z. 2017. Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Frontiers in Plant Science, 8, 1487.

Shindo M, Shimomura K, Yamaguchi S, Umehara M. 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct, 2, e00050.

Stirnberg P, Zhao S, Williamson L, Ward S, Leyser O. 2012. FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant Journal, 71, 907-920.

Sun D, Guo T, Ran Y, Huang Y, Guan B O. 2014. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosensors & Bioelectronics, 61, 541-546.

Tariq A, Ullah I, Sardans J, Graciano C, Mussarat S, Ullah A, Zeng F, Wang W, Al-Bakre D A, Ahmed Z, Ali S, Zhang Z, Yaseen A, Peñuelas J. 2023. Strigolactones can be a potential tool to fight environmental stresses in arid lands. Environmental Research, 229, 115966.

Thussagunpanit J, Nagai Y, Nagae M, Mashiguchi K, Mitsuda N, Ohme-Takagi M, Nakano T, Nakamura H, Asami T. 2017. Involvement of STH7 in light-adapted development in Arabidopsis thaliana promoted by both strigolactone and karrikin. Bioscience Biotechnology and Biochemistry, 81, 292-301.

Tolnai Z, Sharma H, Soos V. 2024. D27-like carotenoid isomerases: at the crossroads of strigolactone and abscisic  acid biosynthesis. Journal of Experimental Botany, 75, 1148-1158.

Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant and Cell Physiology, 51, 1118-1126.

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195-200.

Wang T, Xu F, Wang Z, Wu Q, Cheng W, Que Y, Xu L. 2023. Mapping of QTLs and Screening Candidate Genes Associated with the Ability of  Sugarcane Tillering and Ratooning. International Journal of Molecular Sciences, 24.

Wang W, Gao H, Liang Y, Li J, Wang Y. 2022. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Molecular Plant, 15, 125-137.

Wang X, Niu Y, Zheng Y. 2021. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. International Journal of Molecular Sciences, 22.

Ward S P, Salmon J, Hanley S J, Karp A, Leyser O. 2013. Using Arabidopsis to study shoot branching in biomass willow. Plant Physiology, 162, 800-811.

Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of  plant development by strigolactones. Plant Physiology, 159, 1073-1085.

Wei C Q, Chien C W, Ai L F, Zhao J, Zhang Z, Li K H, Burlingame A L, Sun Y, Wang Z Y. 2016. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics, 43, 555-563.

Wen C, Xi L, Gao B, Wang K, Lv S, Kou Y, Ma N, Zhao L. 2015. Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum 'Jinba'). Plant Physiology and Biochemistry, 96, 241-253.

Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, Xi L, Ma N, Zhao L. 2016. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Reports, 35, 1053-1070.

Wu Z D, Liu X L, Liu J Y, Zan F G, Li X J, Liu H B, Lin X Q, Chen X K, Su H S, Zhao P F, Wu. C W. 2017. Cloning and Expression Analysis of Key Gene ScD27 in Strigolactones Biosynthesis Pathway. Acta Agronomica Sinica.

Xi L, Wen C, Fang S, Chen X, Nie J, Chu J, Yuan C, Yan C, Ma N, Zhao L. 2015. Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba). Frontiers in Plant Science, 6, 694.

Yang Y, Abuauf H, Song S, Wang J Y, Alagoz Y, Moreno J C, Mi J, Ablazov A, Jamil M, Ali S, Zheng X, Balakrishna A, Blilou I, Al-Babili S. 2023. The Arabidopsis D27-LIKE1 is a cis/cis/trans-beta-carotene isomerase that  contributes to Strigolactone biosynthesis and negatively impacts ABA level. Plant Journal, 113, 986-1003.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.

Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q. 2018. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum (Dendranthema grandiflorum 'Jinba'). International Journal of Molecular Sciences, 19.

Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Vanburen R, Paterson A H, Nagai C, Ming R. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics, 50, 1565-1573.

Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L. 2010. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biology, 52, 626-638.

Zhang X, Zhang L, Ma C, Su M, Wang J, Zheng S, Zhang T. 2022. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Scientia Horticulturae, 297, 110962.

Zhou J, Ma L, Zhang S, Zhu Y, Sun D. 2001. Extracellular calmodulin stimulates light-independent RbcS-GUS expression in suspension-cultured cells of transgenic tobacco. Plant and Cell Physiology, 42, 1049-1055.

Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant Journal, 48, 687-698.

 

No related articles found!
No Suggested Reading articles found!