Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Radiation use efficiency of maize under high-density optimal growth conditions in Jilin Province, China

E Li1, Zhijuan Liu1#, Xiaomao Lin2, Tao Li3, Dengyu Shi1, Huazhe Shang4, Suliang Qiao1, Guangxin Zhu1, Wanrong Yang1, Zhenzhen Fu1, Jingjin Gong1, Wanghua Yang1, Zhenkang Yang1, Xiaomeng Lu1, Jingjing Wang1, Lexuan Wang1, Jin Zhao1, Chuang Zhao1, Xiaoguang Yang1

1 College of Resources and Environmental Sciences, China Agricultural University, 2 Yuanmingyuan West Rd., Haidian District, Beijing 100193, China

2 Department of Agronomy, Kansas State University, 2108 Throckmorton Plant Sciences Center, Manhattan, Kansas 66506, USA

3 International Rice Research Institute, Los Baños 4031, Philippines

4 State Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Highlights: 

1. During the entire growth period, maize radiation use efficiency (RUE) averaged 5.71 g MJ-1 APAR (absorbed photosynthetically active radiation) under high-density optimal growth conditions.

2. Within the vegetative and reproductive growth periods, maize RUE averaged 6.85 and 5.64 g MJ-1 APAR, respectively.

3. RUE, 5.07-5.85 g MJ-1 APAR, should be used to derive the optimal potential yield in maize simulation model.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

准确测定玉米的辐射利用效率(RUE)对评估气候变化对玉米生产的影响至关重要。本研究选取了我国吉林省三个玉米品种:郑单958ZD958)、先玉335XY335)和良玉99LY99),在高密度(9 /m²)的最优种植条件下,对玉米在营养生长期、生殖生长期及整个生育期的辐射利用效率进行研究。结果表明,玉米群体光截获量在开花期达到峰值,开花后玉米植株生物量持续积累。基于吸收光合有效辐射(APAR),计算了玉米不同品种不同阶段的RUE。从整个生育期来看,三个玉米品种的RUE平均为5.71 g MJ-1 APAR,三个品种由高到低依次为ZD9585.85 g MJ-1 APAR>XY3355.64 g MJ-1 APAR>LY995.07 g MJ-1 APAR)。三个玉米品种营养生长期和生殖生长期平均RUE平均为6.85 g MJ-1 APAR5.64 g MJ-1 APAR。以APSIM为代表的基于RUE的作物模型预测玉米地上部生物量积累时,RUE值(3.6 g MJ-1 APAR)显著低于在高密最优种植条件下测得的值。因此,为准确估算此类种植条件下玉米的潜在产量,建议将RUE调整至5.07-5.85 g MJ-1 APAR



Abstract  

To evaluate the impact of climate change on maize production, it is critical to accurately measure the radiation use efficiency (RUE) for maize. In this study, we focused on three maize cultivars in Jilin Province, China: Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Liangyu 99 (LY99).  Under the optimal growing conditions for high density (9 plants m-2), we investigated the maize RUE during the vegetative and reproductive phases, and the entire growth period.  The results showed that the canopy light interception for maize peaked during anthesis.  After anthesis, maize plant biomass continued to accumulate.  Based on the absorbed photosynthetically active radiation (APAR), we calculated maize RUE.  During the entire growth period, maize RUE averaged 5.71 g MJ-1 APAR among the three cultivars, with a high-to-low order of ZD958 (5.85 g MJ-1 APAR)>XY335 (5.64 g MJ-1 APAR)>LY99 (5.07 g MJ-1 APAR).  Within the vegetative and reproductive growth periods, maize RUE averaged 6.85 and 5.64 g MJ-1 APAR, respectively.  When utilizing maize models, such as APSIM, that depend on radiation use efficiency (RUE) to predict aboveground biomass accumulation, we observed that the current RUE value of 3.6 g MJ-1 APAR is considerably lower than the measured value obtained under high-density optimal growing conditions.  Consequently, to derive the optimal potential yield for maize in such planting conditions, we recommend adjusting the RUE to a range of 5.07-5.85 g MJ-1 APAR.

Keywords:  RUE              absorbed PAR       maize cultivars       growth period       high density  
Received: 09 October 2024   Online: 18 April 2025  
Fund: 

This work was supported by the National Science and Technology Major Project, China (2022ZD0119503), the National Natural Science Foundation of China (42175190), and the 2115 Talent Development Program of China Agricultural University.

About author:  #Correspondence Zhijuan Liu, E-mail: zhijuanliu@cau.edu.cn

Cite this article: 

E Li, Zhijuan Liu, Xiaomao Lin, Tao Li, Dengyu Shi, Huazhe Shang, Suliang Qiao, Guangxin Zhu, Wanrong Yang, Zhenzhen Fu, Jingjin Gong, Wanghua Yang, Zhenkang Yang, Xiaomeng Lu, Jingjing Wang, Lexuan Wang, Jin Zhao, Chuang Zhao, Xiaoguang Yang. 2025. Radiation use efficiency of maize under high-density optimal growth conditions in Jilin Province, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.016

Ceotto E, Di Candilo M, Castelli F, Badeck F W, Rizza F, Soave C, Volta A, Villani G, Vittorio Marletto V. 2013. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L. Moench). Field Crops Research, 149, 159-166. 

Cirilo A G, Andrade F H. 1994. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Science, 34, 1039–1043.

Echarte L, Rothstein S, Tollenaar M. 2008. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Science, 48, 656-665.

FAO (Food and Agriculture Organization of the United Nations). 2021. Food and Agriculture Organization of the United Nations Stat. Food and Agriculture Organization of the United Nations, Rome.

Jones C A, Dyke P T, Williams J R, Kiniry J R, Benson V W, Griggs R H. 1991. EPIC: An operational model for evaluation of agricultural sustainability. Agricultural Systems, 37, 341-350.

Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267-288.

Kimball B A, Kobayashi K, Bindi M. 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293–368.

Kiniry J R, Jones C A, O'toole J C, Blanchet R, Cabelguenne M, Spanel D A. 1989. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Research, 20, 51-64.

Li M, Li W. 2004. Regulation of fertilizer and density on sink and source traits and yield of maize. Scientia Agricultura Sinica, 8, 1130-1137. (in Chinese)

Lindquist J L, Arkebauer T J, Walters D T, Cassman K G, Dobermann A. 2005. Maize radiation use efficiency under optimal growth conditions. Agronomy Journal, 97, 72-78.

Liu G, Hou P, Xie R, Ming B, Wang K, Liu W, Yang Y, Xu W, Chen J, Li S. 2019. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Science, 59, 1236-1247.

Liu G, Hou P, Xie R, Ming B, Wang K, Xu W, Liu W, Yang Y, Li S. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1Field Crops Research, 213, 221-230.

Liu X, Gu S, Wen W, Lu X, Jin Y, Zhang Y, Guo X. 2023. Disentangling the heterosis in biomass production and radiation use efficiency in maize: A phytomer-based 3d modelling approach. Plants, 12, 1229.

Liu X, Rahman T, Yang F, Song C, Yong T, Liu J, Zhang C, Yang W. 2017. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 12, e0169218.

Liu Z, Gao J, Zhao S, Sha Y, Huang Y, Hao Z, Ke L, Chen F, Yuan L, Mi G. 2023. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Research, 291, 108806.

Liu Z, Yang X, Lin X, Zhang Z, Sun S, Ye Q. 2021a. From dimming to brightening during 1961 to 2014 in the maize growing season of China. Food and Energy Security, 10, 329-340.

Liu Z, Yang X, Xie R, Lin X, Li T, Batchelor W D, Zhao J, Zhang Z, Sun S, Zhang F, Huang Q, Su Z, Wang K, Ming B, Hou P, Li S. 2021b. Prolongation of the grain filling period and change in radiation simultaneously increased maize yields in China. Agricultural and Forest Meteorology, 308, 108573.

Loomis R S, Amthor J S. 1999. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Science, 39, 1584-1596.

MacKinnon J C. 1987. CERES-Maize: A simulation model of maize growth and development. Computers and Electronics in Agriculture, 2, 171-172.

Muchow R C, Davis R. 1988. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: II. Radiation interception and biomass accumulation. Field Crop Research, 18, 17–30.

Pernollet J C, Huet J C, Moutot F, J F Morot-Gaudry J F. 1986. Relationship between photosynthesis and protein synthesis in maize. Plant Physiology, 80, 216-222.

Shen Dongping, Wang K, Zhou L, Fang L, Wang Z, Fu J, Zhang T, Liang Z, Xie R, Ming B, Hou P, Xue J, Li J, Kang X, Zhang G, Li S. 2024. Increasing planting density and optimizing irrigation to improve maize yield and water-use efficiency in Northeast China. Agronomy, 14, 400.

Shi D, Huang Q, Liu Z, Liu T, Su Z, Guo S, Bai F, Sun S, Lin X, Li T, Yang X. 2022. Radiation use efficiency and biomass production of maize under optimal growth conditions in Northeast China. Science of the Total Environment, 836, 155574.

Sinclair T R, Muchow R C. 1999. Radiation use efficiency. Advances in Agronomy, 65, 215–265.

Smith E N, Aalst M, Tosens T, Niinemets Ü, Stich B, Morosinotto T, Alboresi A, Erb T J, Gómez-Coronado P A, Tolleter D, Finazzi G, Curien G, Heinemann M, Ebenhöh O, Hibberd J M, Schlüter U, Sun T, Weber A P M. 2023. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Molecular Plant, 16, 1547-1563.

Soil Survey Staff. 1998. Keys to Soil Taxonomy. United States Department of Agriculture, Natural Resources Conservation Service, Washington, D.C., USA. p. 211.

Stöckle C O, Kemanian A R. 2009. Chapter 7 - Crop radiation capture and use efficiency: A framework for crop growth analysis, 2009, 145-170.

Sun S, Lin X, Sassenrath G F, Ciampitti I, Gowda P, Ye Q, Yang X. 2021. Dryland maize yield potentials and constraints: A case study in western Kansas. Food and Energy Security, 11, e328.

Sun Z, Sun L, Liu Y, Li Y, Crusiol L G T, Chen R, Wuyun D. 2024. Estimating fraction of absorbed photosynthetically active radiation of winter wheat based on simulated sentinel-2 data under different varieties and water stress. Remote Sensing, 16, 362.

Tollenaar M, Aguilera A. 1992. Radiation use efficiency of an old and a new maize hybrid. Agronomy Journal, 84, 536-541.

Tollenaar M, Bruulsema T W. 1988. Efficiency of maize dry matter production during periods of complete leaf area expansion. Agronomy Journal, 80, 580-585.

Wei S, Wang X, Zhu Q, Jiang D, Dong S. 2017. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization. The Science of Nature, 104, 1-11.

Williams I N, Riley W J, Kueppers L M, Biraud S C, Torn M S. 2016. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat. Journal of Geophysical Research: Biogeosciences, 121, 1903-1915.

Wu A, Truong S H, McCormick R, Oosterom E J, Messina C D, Cooper M, Hammer G L. 2024. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in crop-scale radiation use efficiency. New Phytologist, 241, 2435-2447.

Wu X, Xiao X, Yang Z, Wang J, Steiner J, Bajgain R. 2021. Spatial-temporal dynamics of maize and soybean planted area, harvested area, gross primary production, and grain production in the Contiguous United States during 2008-2018. Agricultural and Forest Meteorology, 297, 108240.

Xue J, Gou L, Zhao Y, Yao M, Yao H, Tian J, Zhang W. 2016. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133-141.

Zhang G, Shen D, Ming Bo, Xie R, Hou P, Xue J, Wang K, Li S. 2022. Optimizing planting density to increase maize yield and water use efficiency and economic return in the arid region of Northwest China. Agriculture, 12, 1322. 

No related articles found!
No Suggested Reading articles found!