Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Impact of tillage and straw management on cadmium bioavailability and uptake in rice: A long-term field study

Shuai Yuan1, Pingping Chen1, Songyuan Guo1, Wenxin Zhou2, Kaikai Cheng1, 3, Hongmei Liu1, Xiaoping Xiao3, Haiming Tang3#, Zhenxie Yi1#

1 College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2 College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China

3 Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

 Highlights 

1. Plow tillage with straw incorporate effectively lowers cadmium (Cd) in rice grains.

2. This practice reduces soil Cd availability and enhances iron plaque (IP) on rice roots.

3. Available Cd, acid-soluble Cd, and IP directly influence Cd in rice grains.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤耕作改变土壤与水稻秸秆之间的相互作用,从而影响土壤质量和镉(Cd动态变化。然而,土壤耕作与水稻秸秆管理对土壤Cd积累水稻Cd吸收的影响尚不明确。本研究探讨耕作与秸秆方式如何通过改变土壤Cd迁移和生物有效性来影响水稻Cd吸收。设置了长期田间定位试验,包含四种处理:免耕+秸秆还田(NTS)、旋耕+秸秆还田(RTS)、翻耕+秸秆还田(PTS)和翻耕+秸秆不还田(PT)。结果表明,不同耕作方式下水稻各器官(根、茎、叶和稻米)Cd含量表现NTS>RTS>PTS,其中仅有PTS处理稻米Cd含量低于0.2 mg kg⁻¹PTS处理稻米平均Cd含量NTSRTS处理分别显著降低了56.76%25.88%。偏最小二乘路径模型显示,土壤有效CdAvail-Cd)和弱酸可提取态CdAci-Cd)的降低以及水稻根表铁膜(IP)的形成,是减少稻米Cd含量的关键因素。PTS处理通过降低土壤容重,提升土壤有机质含量pHNitrospirotaBacteroidota菌门的相对丰度,使得土壤Avail-CdAci-Cd含量降低。此外,PTS处理通过提高土壤养分Fe2+含量改善水稻根系形态增强根系抗氧化活性促进水稻IP的形成,从而抑制水稻Cd吸收。尽管PTS处理PT处理增加了土壤总CdAvail-Cd含量,但其促进IP形成有效降低了水稻对Cd的吸收,最终两者稻米Cd含量没有差异。因此,长期实施翻耕结合秸秆还田是稻作系统中既能提高土壤质量,又能有效降低水稻Cd吸收的有效措施



Abstract  

Tillage practices alter the interaction between soil and rice straw, impacting soil quality and cadmium (Cd) dynamics.  However, the effects of tillage and straw management strategies on soil Cd accumulation and rice uptake remain unclear.  This study investigated how tillage and straw practices influence rice Cd uptake by altering soil Cd mobility and bioavailability.  A long-term field experiment was conducted with four treatments: no-tillage with straw return on the soil surface (NTS), rotary tillage with straw incorporate (RTS), plow tillage with straw incorporate (PTS), and plow tillage with straw removed (PT).  Results showed that Cd concentrations in rice organs (root, stem, leaf and rice grain) decreased in the order NTS>RTS>PTS, with only PTS maintaining grain Cd levels below 0.2 mg kg⁻¹.  Compared with NTS and RTS, the average Cd concentrations in rice grain under PTS were significantly reduced by 56.76 and 25.88%, respectively.  A partial least squares path model indicated that reductions in available Cd (Avail-Cd) and acid-soluble Cd (Aci-Cd), combined with iron plaque (IP) formation on the roots, were key factors in lowering rice Cd levels.  PTS reduced Avail-Cd and Aci-Cd by decreasing soil bulk density, increasing soil organic matter, pH, and the abundances of Nitrospirota and Bacteroidota.  Moreover, PTS enhanced soil nutrient and Fe²⁺ levels, promoted IP formation on rice roots through improved root morphology and antioxidant activity, and limited Cd uptake.  Although PTS increased total and available soil Cd compared to PT, its promotion of IP formation mitigated rice Cd uptake, resulting in comparable grain Cd concentrations between the two.  Thus, long-term plow tillage with straw incorporate emerges as a sustainable practice to enhance soil quality and reduce Cd uptake in rice cropping system.

Keywords:  tillage practices       straw return       rice       cadmium       iron plaque  
Online: 04 April 2025  
Fund: 

This work was supported by the National Key R&D Program of China (2023YFD2301400), and the Hunan Provincial Natural Science Foundation Project (2022JJ30303, 2023JJ60227).

About author:  #Correspondence Haiming Tang, E-mail: tanghaiming66@163.com; Zhenxie Yi, E-mail: yizhenxie@126.com

Cite this article: 

Shuai Yuan, Pingping Chen, Songyuan Guo, Wenxin Zhou, Kaikai Cheng, Hongmei Liu, Xiaoping Xiao, Haiming Tang, Zhenxie Yi. 2025. Impact of tillage and straw management on cadmium bioavailability and uptake in rice: A long-term field study. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.011

Bergkvist P, Jarvis N, Berggren D, Carlgren K. 2003. Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil. Agriculture, Ecosystems & Environment, 97, 167–179.

Chen L, Guo L, Liao P, Xiong Q, Deng X, Gao H, Zhang H. 2022. Effects of biochar on the dynamic immobilization of Cd and Cu and rice accumulation in soils with different acidity levels. Journal of Cleaner Production, 372, 133730.

Chen W, Peng L, Hu K, Zhang Z, Peng C, Teng C, Zhou K. 2020. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. Journal of Hazardous Materials393, 122425.

Denardin L, Carmona F, Veloso M, Martins A, Freitas T, Carlos F, Anghinoni I. 2019. No-tillage increases irrigated rice yield through soil quality improvement along time. Soil and Tillage Research186, 64–69.

Fang C, Li P, Zhang J, Lu Y, Tang Y, Tu N, Nie J. 2024. Soil Cd bioavailability response characteristics to microbes in paddy fields with co-return of milk vetch, rice straw and amendments. Science of the Total Environment935, 173306.

Fu Y, Yang X, Shen H. 2018. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings. Ecotoxicology and Environmental Safety161, 534–541.

Huang G, Ding C, Li Y, Zhang T, Wang X. 2020. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.). Journal of Hazardous Materials398, 122860.

Huang H, Tian Z, Guo D, Tang Z, Li R, Ali A, Han J. 2024. Rice straw returning enhances cadmium activation by accelerating iron cycling thus hydroxyl radical production in paddy soils during drainage. Science of the Total Environment923, 171543.

Huang M, Zhou X, Cao F, Xia B, Zou Y. 2015. No-tillage effect on rice yield in China: A meta-analysis. Field Crops Research183, 126–137.

Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zia-ur-Rehman M. 2023. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. Science of the Total Environment, 897, 165369.

Li S, Chen S, Wang M, Lei X, Zheng H, Sun X, Han Y. 2020. Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe+ pH conditions. Chemosphere, 251, 126355.

Linh T B, Sleutel S, Thi G V, LeVan K, Cornelis W M. 2015. Deeper tillage and root growth in annual rice-upland cropping systems result in improved rice yield and economic profit relative to rice monoculture. Soil and Tillage Research154, 44–52.

Liu H J, Zhang J L, Christie P, Zhang F S. 2007. Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant and Soil, 300, 105–115.

Liu J, Shu A, Song W, Shi W, Li M, Zhang W, Gao Z. 2021a. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma404, 115287.

Liu N, Lou X, Li X, Shuai Z, Liu H, Jiang Z, Wei S. 2021b. Rhizosphere dissolved organic matter and iron plaque modified by organic amendments and its relations to cadmium bioavailability and accumulation in rice. Science of the Total Environment, 792, 148216.

Lu K, Yang X, Gielen G, Bolan N, Ok Y S, Niazi N K, Wang H. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Evironmental Management186, 285–292.

Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Theiss F. 2019. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena175, 339348.

McLaughlin M J, Smolders E, Zhao F J, Grant C, Montalvo D. 2021. Managing cadmium in agricultural systems. Advances in Agronomy166, 1–129.

Pandey D, Agrawal M, Bohra J S. 2014. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil and Tillage Research136, 51–60.

Rao Z X, Huang D Y, Wu J S, Zhu Q H, Zhu H H, Xu C, Duan M M. 2018. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environmental Pollution239, 198-204.

Sanchez J, Lopez A, Albarran A, Pena D, Becerra D, Rato-Nunes J M. 2016. Short and long-term effects of different irrigation and tillage systems on soil properties and rice productivity under Mediterranean conditions. European Journal of Agronomy77, 101–110.

Shen Z, Fan X, Hou D, Jin F, O'Connor D, Tsang D C, Alessi D S. 2019. Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 233, 149-156.

Shi J, Du P, Luo H, Wu H, Zhang Y, Chen J, Gao H. 2022. Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, 310, 114509.

Upadhyay M K, Majumdar A, Srivastava A K, Bose S, Suprasanna P, Srivastava S. 2022. Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. Chemosphere292, 133482.

Wang C, Wang Z, Liu M, Batool M, El-Badri A M, Wang X, Zhao J. 2024. Optimizing tillage regimes in rice-rapeseed rotation system to enhance crop yield and environmental sustainability. Field Crops Research, 318, 109614.

Wang P, Chen H, Kopittke P M, Zhao F J. 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution249, 1038–1048.

Weidhuner A, Hanauer A, Krausz R, Crittenden S J, Gage K, Sadeghpour A. 2021. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years. Soil and Tillage Research208, 104878.

Yang J, Tam N F, Ye Z. 2014. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant and Soil374, 815–828.

Yu H Y, Liu C, Zhu J, Li F, Deng D M, Wang Q, Liu C. 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

Yuan S, Chen P, Zhou W, Liu H, Cheng K, Xiao X, Yi Z. 2024. Response characteristics of soil Cd availability to microbes in paddy soil with long-term fertilization and its impact on Cd uptake in rice. Science of the Total Environment, 957, 177680.

Zandi P, Yang J, Xia X, Barabasz-Krasny B, Możdżeń K, Puła J, Li Q. 2021. Sulphur nutrition and iron plaque formation on roots of rice seedlings and their consequences for immobilisation and uptake of chromium in solution culture. Plant and Soil462, 365-388.

Zhang L, Zheng J, Chen L, Shen M, Zhang X, Zhang M, Zhang W. 2015. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. European Journal of Agronomy, 63, 47–54.

Zhao Y, Liu M, Guo L, Yang D, He N, Ying B, Wang Y. 2020. Influence of silicon on cadmium availability and cadmium uptake by rice in acid and alkaline paddy soils. Journal of Soils and Sediments, 20, 2343–2353.

Zotarelli L, Zatorre N P, Boddey R M, Urquiaga S, Jantalia C P, Franchini J C, Alves B J. 2012. Influence of no-tillage and frequency of a green manure legume in crop rotations for balancing N outputs and preserving soil organic C stocks. Field Crops Research132, 185–195. 

No related articles found!
No Suggested Reading articles found!