Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Phase-specific enhancement of carotenoids and abscisic acid promotes secondary cell wall synthesis by activating key transcription factors and ethylene biosynthesis in cotton fiber

Chuannan Wang1, Baitao Liu1, Jianyan Zeng1, Yaohua Li2, 3, Wanting Yu1, Qingwei Suo1, Lingfang Ran1, Long Chen1, Yi Wang1, Aimin Liang1, Jie Kong2, Yuehua Xiao1, 2, 3#

1 Chongqing Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China

2 Cotton Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

3 Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

棉花(Gossypium)是一种重要的经济作物,为全球纺织业提供了大部分天然纤维。次生细胞壁(SCW)构成棉纤维干物质的主体,是决定棉花产量和质量的关键因素。本研究采用纤维特异性启动子proFbl2A,在次生细胞壁合成阶段的棉花纤维中控制八氢番茄红素合成酶和1-脱氧-D-木酮糖-5-磷酸合成酶融合基因的表达,从而提高转基因棉花纤维中的类胡萝卜素和脱落酸(ABA)水平。与野生型对照相比,ABA上调的棉花纤维中次生壁合成提前,同时伴随次生细胞壁阶段特异性基因和关键次生细胞壁调节因子的表达提前。同时发现ABA信号传导的正向bZIP转录因子(GhbZIP27bGhbZIP37bGhbZIP66b)可以结合并激活关键次生细胞壁调节因子(GhTCP4AGhFSN1GhMYB7D)的启动子。此外,这些bZIP还可以与两个乙烯合成酶基因(GhACS10GhACO3)相互作用并促进其表达。我们的数据表明,提高类胡萝卜素和ABA合成水平可以通过激活关键转录因子启动棉花次生壁的合成,并通过上调乙烯生物合成促进次生细胞壁的增厚。



Abstract  
 Cotton (Gossypium) is an important economic crop providing most of the natural fiber for the global textile industry.  The secondary cell wall (SCW) comprises the major dry weight of cotton fiber, and is a key determinant of cotton yield and quality.  In this study, a fiber-specific promoter, proFbl2A, was employed to control the expression of a fusion gene of phytoene synthase and 1-deoxy-D-xylulose-5-phosphate synthase (GhPSY2D and GhDXS6D, respectively) in cotton fibers of the SCW synthesis stage, resulting in higher carotenoid and abscisic acid (ABA) levels in the transgenic cotton fibers.  The SCW synthesis initiated earlier in the ABA-up-regulated cotton fibers than the wild-type control, along with the expression of SCW stage-specific genes and key SCW regulators.  Consistently, several positive bZIP transcription factors of ABA signaling (GhbZIP27b, GhbZIP37b, and GhbZIP66b), were found to bind to and activate the promoters of key SCW regulators (GhTCP4A, GhFSN1, and GhMYB7D).  Furthermore, these bZIPs could also interact with and promote the expression of two ethylene synthase genes (GhACS10 and GhACO3).  Our data demonstrated that enhancement of carotenoid and ABA could advance SCW initiation by activating key transcription factors, and promote SCW thickening via ethylene biosynthesis in cotton fibers. 
Keywords:  cotton fiber              carotenoid       secondary cell wall       abscisic acid       GhbZIP       ethylene  
Online: 03 April 2025  
Fund: 

This work was supported partially by the National Natural Science Foundation of China (U2003209), the Tianshan Talent Training Program, China (2023TSYCTD0002), the Central Guidance Fund for Local Scientific and Technological Development, China (ZYYD2024JD19), the National Key Research and Development Program of China (2024YFD1200304), and the Fundamental Research Funds for the Central Universities, China (SWU-KR23009).

About author:  #Correspondence Yuehua Xiao, Tel: 86-23-68250042, Fax: 86-23-68251883, E-mail: xiaoyuehua@swu.edu.cn

Cite this article: 

Chuannan Wang, Baitao Liu, Jianyan Zeng, Yaohua Li, Wanting Yu, Qingwei Suo, Lingfang Ran, Long Chen, Yi Wang, Aimin Liang, Jie Kong, Yuehua Xiao. 2025. Phase-specific enhancement of carotenoids and abscisic acid promotes secondary cell wall synthesis by activating key transcription factors and ethylene biosynthesis in cotton fiber. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.006

Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C. 2016. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnology Journal, 14, 195-205.

Berry H M, Rickett D V, Baxter C J, Enfissi E M A, Fraser P D. 2019. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. Journal of Experimental Botany, 70, 2637-2650.

Cao J-F, Zhao B, Huang C-C, Chen Z-W, Zhao T, Liu H-R, Hu G-J, Shangguan X-X, Shan C-M, Wang L-J, Zhang T-Z, Wendel J F, Guan X-Y, Chen X-Y. 2020. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular Plant, 13, 1063-1077.

Chen Z, Li Y, Teng Z, Zhang Y, Liu Y, Suo Q, Wang Y, Zeng J, Liang A, Yan Q, Liu D, Liu N, Fang N, Liu H, Zhang Z, Xiao Y. 2023. Cotton green fiber promotes suberin synthesis interfering cellulose deposition in the secondary cell wall. Industrial Crops and Products, 194, 116346.

Ding X, Li X, Wang L, Zeng J, Huang L, Xiong L, Song S, Zhao J, Hou L, Wang F, Pei Y. 2021. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. Plant Biotechnology Journal, 19, 1092-1094.

Dröge-Laser W, Snoek B L, Snel B, Weiste C. 2018b. The Arabidopsis bZIP transcription factor family — an update. Current Opinion in Plant Biology, 45, 36-49.

Dröge-Laser W, Weiste C. 2018a. The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends in Plant Science, 23, 422-433.

Ge X, Xu J, Yang Z, Yang X, Wang Y, Chen Y, Wang P, Li F. 2022. Efficient genotype‐independent cotton genetic transformation and genome editing. Journal of Integrative Plant Biology, 65, 907-917.

Guo Y, Gao Y, Chen F, Luo J, Qiao M, Li M, Persson S, Zeng W, Xu W. 2024. Down-regulation of xylan biosynthetic GhGT47Bs in cotton impedes fibre elongation and secondary wall thickening during fibre transition. Plant Biotechnol Journal, 22, 281-283.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science, 3,

Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. 2013. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 25, 4421-4438.

Huang J, Chen F, Guo Y, Gan X, Yang M, Zeng W, Persson S, Li J, Xu W. 2021. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis‐elements. New Phytologist, 232, 1718-1737.

Iglesias‐Fernández R, Barrero‐Sicilia C, Carrillo‐Barral N, Oñate‐Sánchez L, Carbonero P. 2013. Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase‐encoding gene AtMAN7. The Plant Journal, 74, 767-780.

Kou X, Zhou J, Wu C E, Yang S, Liu Y, Chai L, Xue Z. 2021. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: a review. Plant Molecular Biology, 106, 223-238.

Li L, Huang J, Qin L, Huang Y, Zeng W, Rao Y, Li J, Li X, Xu W J P P. 2014. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. Physiologia Plantarum, 152, 367–379.

Li X, Mitchell M, Rolland V, Allen S, Macmillan C, Pettolino F. 2023. ‘Pink cotton candy’—A new dye‐free cotton. Plant Biotechnology Journal, 21, 677-679.

Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Guo K, Liu N, Thyssen G N, Fang D D, Lindsey K, Zhang X, Wang M, Tu L. 2020. Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytologist, 226, 1738-1752.

Liu C, Yu H, Rao X, Li L, Dixon R A. 2021. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proceedings of the National Academy of Sciences, 118,

Liu W-C, Song R-F, Zheng S-Q, Li T-T, Zhang B-L, Gao X, Lu Y-T. 2022. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Molecular Plant, 15, 973-990.

Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y. 2007. GhDET2, a steroid 5α‐reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal, 51, 419-430.

Potikha T S, Collins C C, Johnson D I, Delmer D P, Levine A. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology, 119, 849–858.

Ren Y, Yu G, Shi C, Liu L, Guo Q, Han C, Zhang D, Zhang L, Liu B, Gao H, Zeng J, Zhou Y, Qiu Y, Wei J, Luo Y, Zhu F, Li X, Wu Q, Li B, Fu W, et al. 2022. Majorbio Cloud: A one‐stop, comprehensive bioinformatic platform for multiomics analyses. iMeta, 1, e12.

Rinehart J A, Petersen M W, John M E. 1996. Tissue-specific and developmental regulation of cotton gene FbL2A. Plant Physiology, 112, 1331–1341.

Suo Q, Fang N, Zeng J, Yan F, Zhu X, Wang Y, Yu W, Chen J, Liang A, Li Y, Kong J, Xiao Y. 2024. R2R3 MYB transcription factor GhMYB201 promotes cotton fiber elongation via cell wall loosening and very-long-chain fatty acid synthesis. International Journal of Molecular Sciences, 25, 9559.

Wang N, Zhang B, Yao T, Shen C, Wen T, Zhang R, Li Y, Le Y, Li Z, Zhang X, Lin Z. 2022. Re enhances anthocyanin and proanthocyanidin accumulation to produce red foliated cotton and brown fiber. Plant Physiology, 189, 1466-1481.

Wang Y, Li Y, He S-P, Xu S-W, Li L, Zheng Y, Li X-B. 2023. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. The Plant Cell, 35, 4133-4154.

Wen X, Zhai Y, Zhang L, Chen Y, Zhu Z, Chen G, Wang K, Zhu Y. 2022. Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. Science China Life Sciences, 65, 1776-1793.

Yan Q, Wang Y, Li Q, Zhang Z, Ding H, Zhang Y, Liu H, Luo M, Liu D, Song W, Liu H, Yao D, Ouyang X, Li Y, Li X, Pei Y, Xiao Y. 2018. Up‐regulation of GhTT2‐3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal, 16, 1735-1747.

Yang Y, Lai W, Long L, Gao W, Xu F, Li P, Zhou S, Ding Y, Hu H. 2023. Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Scientific Reports, 13, 1488.

Yao D, Wang Y, Li Q, Ouyang X, Li Y, Wang C, Ding L, Hou L, Luo M, Xiao Y. 2018. Specific upregulation of a cotton phytoene synthase gene produces golden cottonseeds with enhanced provitamin A. Scientific Reports, 8, 1348.

Zeng J, Yao D, Luo M, Ding L, Wang Y, Yan X, Ye S E, Wang C, Wu Y, Zhang J, Li Y, Ran L, Dai Y, Chen Y, Wang F, Lai H, Liu N, Fang N, Pei Y, Xiao Y. 2023. Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis. The Crop Journal, 11, 774-784.

Zhang J, Huang G Q, Zou D, Yan J Q, Li Y, Hu S, Li X B. 2018. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytologist, 217, 625-640.

Zhang J, John U P, Wang Y, Li X, Gunawardana D, Polotnianka R M, Spangenberg G C, Nan Z. 2011. Targeted mining of drought stress-responsive genes from EST resources in Cleistogenes songorica. Journal of Plant Physiology, 168, 1844-1851.

Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, et al. 2021. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. Science China Life Sciences, 64, 1392-1422.

 

No related articles found!
No Suggested Reading articles found!