Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Exogenous prohexadione-calcium enhances soybean yield under saline-alkali stress by modulating ion homeostasis, ascorbate-glutathione defense and photosynthesis

Minglong Yu1, 2*, Lu Huang1, 3*, Aaqil Khan1, Naijie Feng1, 4, Dianfeng Zheng1, 4#

1 College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China

2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China

3 College of Horticulture, Hunan Agricultural University, Changsha 410128, China

4 Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen 518108, China

 Highlights 

1. Pro-Ca application increased soybean yield under saline-alkali stress by inhibiting Na+ influx, activating the AsA-GSH cycle, and maintaining biomembrane systems.

2. Pro-Ca application inhibited the degradation of chlorophyll and also protected the ultrastructural stability of chloroplasts.

3. 100 mg L−1 Pro-Ca can be used as a suitable concentration for spraying soybeans in saline alkali soil.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

调环酸钙Pro-Ca)可以积极调节作物对盐碱胁迫的耐受性。然而,施用Pro-Ca的最佳浓度及其增强大豆耐盐碱性和产量的机制仍不清楚。本研究旨在确定外源施用Pro-Ca的最佳浓度,并揭示Pro-Ca对盐碱胁迫下大豆修复和产量响应的潜在机制。结果表明,盐碱胁迫通过触发活性氧(ROS)产生,导致Na+过度积累对基粒片层造成氧化损伤,从而对大豆幼苗的形态和生理特性产生负面影响。施用100 mg L−1 Pro-Ca为最佳,通过显著降低盐碱胁迫下的Na+吸收来改善干物质积累和归一化植被指数(NDVI)。此外,综合生理、超微结构和转录组数据表明,Pro-Ca显著增强了抗坏血酸-谷胱甘肽(AsA-GSH)循环,通过上调相关基因的表达来增强抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDHAR)的活性以及AsA/DHAGSH/GSSG的比率以淬灭ROS,从而保护内囊体膜和线粒体膜免受降解。编码抗坏血酸和醛酸代谢的差异表达基因(DEGs)在膜的组成部分中显著富集(P<0.05)。此外,Pro-Ca处理上调了盐碱胁迫下编码光系统的基因表达,降低了光抑制和气孔限制(Ls),并减轻了盐碱胁迫引起的光系统损伤和产量下降。总之,叶片喷施Pro-Ca可通过抑制Na+内流、增强AsA-GSH循环、维持生物膜系统和提高光合效率来有效增强大豆幼苗对盐碱胁迫的耐受性。



Abstract  

Prohexadione-calcium (Pro-Ca) has been shown to positively regulate crop tolerance to saline-alkali stress.  However, the optimal concentration for Pro-Ca application and the mechanisms through which it enhances saline-alkali tolerance and yield in soybean remain unclear.  This study aimed to determine the optimal concentration of exogenously applied Pro-Ca and revealed the mechanisms underlying Pro-Ca’s effect on remediation and yield response in soybean under saline-alkali stress.  The results indicated that saline-alkali stress negatively impacted the morphological and physiological traits of soybean seedlings by triggering the production of reactive oxygen species (ROS), leading to oxidative damage of the grana lamellae due to excessive accumulation of Na+.  An application of 100 mg L−1 Pro-Ca was found to be optimal, promoting dry matter accumulation and normalized difference vegetation index (NDVI) by significantly reducing Na+ uptake under saline-alkali stress.  Moreover, integrated physiological, ultrastructural, and transcriptomic analyses indicated that Pro-Ca significantly enhanced the ascorbate-glutathione (AsA-GSH) cycle by up-regulating the expression of related genes to enhance the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and the AsA/DHA and GSH/GSSG ratios to quench ROS, thereby protecting both thylakoid and mitochondrial membrane from degradation.  The differentially expressed genes (DEGs) encoding ascorbate and aldarate metabolism were significantly (P<0.05) enriched in the integral component of membrane.  Furthermore, Pro-Ca treatment up-regulated the expression of genes encoded photosystems under saline-alkali stress, which reduced the photoinhibition and stomatal limitation (Ls) and mitigating damage photosystem and preventing yield reduction.  In summary, foliar application of Pro-Ca could efficiently enhance soybean seedlings tolerance to saline-alkali stress by inhibiting Na+ influx, enhancing the AsA-GSH cycle, maintaining biomembrane system, and improving photosynthetic efficiency.

Keywords:  soybean       prohexadione-calcium       saline-alkali stress       physiological       ultrastructural       transcriptomic  
Received: 08 December 2024   Online: 03 April 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (318576) and the Guangdong Graduate Education Innovation Project, China (2022XSLT036).

About author:  Minglong Yu, E-mail: 15776559827@163.com; #Corresponding author Dianfeng Zheng, E-mail: zhengdf@gdou.edu.cn * These two authors contributed equally to this research.

Cite this article: 

Minglong Yu, Lu Huang, Aaqil Khan, Naijie Feng, Dianfeng Zheng. 2025. Exogenous prohexadione-calcium enhances soybean yield under saline-alkali stress by modulating ion homeostasis, ascorbate-glutathione defense and photosynthesis. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.005

Aghdam M S. 2013. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology-Mysore, 50, 1029−1033.

Ahmad P, Ahanger M A, Egamberdieva D, Alam P, Alyemeni M N, Ashraf M. 2018. Modification of osmolytes and antioxidant enzymes by 24-Epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. Journal of Plant Growth Regulation, 37, 3093−3322.

Akram S, Siddiqui M N, Hussain B M N, Al Bari M A, Mostofa M G, Hossain M A, Tran L S P. 2017. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. Journal of Plant Growth Regulation, 36, 877−888.

Alam P, Albalawi T H, Altalayan F H, Bakht M A, Ahanger M A, Raja V, Ashraf M, Ahmad P. 2019. 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. Biomolecules, 9, 640.

Bae N, Shim S H, Alavilli H, Do H, Park M, Lee D W, Lee J H, Lee H Y S, Li X Z, Lee C H, Jeon J S, Lee B H. 2024. Enhanced salt stress tolerance in plants without growth penalty through increased photosynthesis activity by plastocyanin from Antarctic moss. Plant Journal, 121, e17168.

Becker T B, Schiavon A V, Delazeri E E, Barreto C F, Correa Antunes L E. 2020. Productive behavior of strawberry from potted seedlings produced with application of prohexadione calcium in soilless cultivation. Emirates Journal of Food and Agriculture, 32, 309−318.

Bekheta M A, Abdelhamid M T, El-Morsi A A. 2009. Physiological response of Vicia faba to prohexadione-calcium under saline conditions. Planta Daninha, 27, 769−779.

Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. 2020. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research, 238, 126486.

Cheng C, Liu Y M, Liu X, An J, Jiang L, Yu B J. 2019. Recretohalophyte Tamarix TrSOS1 confers higher salt tolerance to transgenic plants and yeast than glycophyte soybean GmSOS1. Environmental and Experimental Botany, 165, 196−207.

Davletova S, Rizhsky L, Liang H J, Zhong S Q, Oliver D J, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 17, 268−281.

Deng P, Khan A, Zhou H, Lu X T, Zhao H M, Du Y W, Wang Y X, Feng N J, Zheng D F. 2024. Application of prohexadione-calcium priming affects Brassica napus L. seedlings by regulating morph-physiological characteristics under salt stress. PeerJ, 12, e17312.

Deng R, Li Y, Feng N J, Zheng D F, Du Y W, Khan A, Xue Y B, Zhang J Q, Feng Y N. 2024. Integrative analyses reveal the physiological and molecular role of prohexadione calcium in regulating salt tolerance in rice. International Journal of Molecular Sciences, 25, 9124.

Desneux N, Decourtye A, Delpuech J M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81−106.

Du B, Haensch R, Alfarraj S, Rennenberg H. 2024. Strategies of plants to overcome abiotic and biotic stresses. Biological Reviews, 99, 1524−1536.

Duan Y J, Wang X X, Jiao Y, Liu Y Y, Li Y, Song Y Z, Wang L, Tong X H, Jiang Y, Wang S D, Wang S. 2024. Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: A transcriptomic and metabolomic approach. BMC Plant Biology, 24, 380.

Estaji A, Niknam F. 2020. Foliar salicylic acid spraying effect' on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, 12.

Fan Y, Shen W Y, Vanessa P, Cheng F Q. 2021. Synergistic effect of Si and K in improving the growth, ion distribution and partitioning of Lolium perenne L. under saline-alkali stress. Journal of Integrative Agriculture, 20, 1660−1673.

Feng N J, Yu M L, Li Y, Jin D, Zheng D F. 2021. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicology and Environmental Safety, 220, 112369.

Gadelha C G, Coutinho Í A C, Pinheiro S K D P, Miguel E D C, Carvalho H H D, Lopes L D S, Gomes-Filho E. 2021. Sodium uptake and transport regulation, and photosynthetic efficiency maintenance as the basis of differential salt tolerance in rice cultivars. Environmental and Experimental Botany, 192, 104654.

Großkinsky D K, Svensgaard J, Christensen S, Roitsch T. 2015. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. Journal of Experimental Botany, 66, 5429−5440.

Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. 2015. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 15, 170.

Gupta P, Srivastava S, Seth C S. 2017. 24-Epibrassinolide and Sodium Nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant and Soil, 411, 483−498.

Hasanuzzaman M, Bhuyan M H M B, Anee T I, Parvin K, Nahar K, Mahmud J A, Fujita M. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8, 384.

Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Al Mahmud J, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.

Hassani A, Azapagic A, Shokri N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12, 1−17.

Hu E M, Liu M, Zhou R, Jiang F L, Sun M T, Wen J Q, Zhu Z H, Wu Z. 2021. Relationship between melatonin and abscisic acid in response to salt stress of tomato. Scientia Horticulturae, 285, 110176.

Jiang K, Guo H W, Zhai J X. 2023. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. Journal of Integrative Plant Biology, 65, 381−398.

Li Y, Zhou H, Feng N J, Zheng D F, Ma G H, Feng S J, Liu M L, Yu M L, Huang X X, Huang A Q. 2023. Physiological and transcriptome analysis reveals that prohexadione-calcium promotes rice seedling’s development under salt stress by regulating antioxidant processes and photosynthesis. PLoS ONE, 18, e0286505.

Liu J, Shabala S, Shabala L, Zhou M X, Meinke H, Venkataraman G, Chen Z H, Zeng F R, Zhao Q Z. 2019. Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Frontiers in Plant Science, 10, 1361.

Liu M L, Feng N J, Zheng D F, Zhang R J. 2024. Prohexadione calcium and gibberellin improve osmoregulation, antioxidant response and ion homeostasis to alleviate NaCl stress in rice seedlings. Agronomy, 14, 1318.

Lu C X, Li L Y, Liu X L, Chen M, Wan S B, Li G W. 2023. Salt stress inhibits photosynthesis and destroys chloroplast structure by downregulating chloroplast development-related genes in Robinia pseudoacacia seedlings. Plants, 12, 1283.

Luo B, Wang C, Wang X D, Zhang H, Zhou Y A, Wang W S, Song P. 2021. Changes in photosynthesis and chlorophyll fluorescence in two soybean (Glycine max) varieties under NaCl stress. International Journal of Agricultural and Biological Engineering, 14, 76−82.

Mehler A H. 1951. Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Archives of Biochemistry and Biophysics, 33, 65−77.

Mehmood S, Ahmed W, Ikram M, Imtiaz M, Mahmood S, Tu S X, Chen D Y. 2020. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants, 9, 1173.

Miranda R D S, Gomes-Filho E, Prisco J T, Alvarez-Pizarro J C. 2016. Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regulation, 78, 121−131.

Mittler R. 2017. ROS are good. Trends in Plant Science, 22, 11−19.

Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23, 663−679.

Nakayama I, Kamiya Y, Kobayashi M, Abe H, Sakurai A. 1990. Effects of a plant-growth regulator, prohexadione, on the biosynthesis of gibberellins in cell-free systems derived from immature seeds. Plant and Cell Physiology, 31, 1183−1190.

Parida A K, Jha B. 2013. Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiologiae Plantarum, 35, 2821−2832.

Peña-Calzada K, Olivera-Viciedo D, Calero-Hurtado A, Prado R D M, Habermann E, Tenesaca L F L, Ajila G, de Oliveira R, Rodríguez J C, Gratão P L. 2023. Silicon mitigates the negative impacts of salt stress in soybean plants. Journal of the Science of Food and Agriculture, 103, 4360−4370.

Rademacher W. 2015. Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845−872.

Raja V, Majeed U, Kang H, Andrabi K I, John R. 2017. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142−157.

Rasool S, Ahmad A, Siddiqi T O, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35, 1039−1050.

Salesse-Smith C E, Wang Y, Long S P. 2025. Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency. New Phytologist, 245, 951−965.

Sharma A, Thakur S, Kumar V, Kanwar M K, Kesavan A K, Thukral A K, Bhardwaj R, Alam P, Ahmad P. 2016. Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Frontiers in Plant Science, 7, 1569.

Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology (B: Biology), 104, 236−257.

Sun T J, Fan L, Yang J, Cao R Z, Yang C Y, Zhang J, Wang D M. 2019. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+ efflux rate and K+/Na+ ratio in Arabidopsis. BMC Plant Biology, 19, 469.

Sun Z W, Ren L K, Fan J W, Li Q, Wang K J, Guo M M, Wang L, Li J, Zhang G X, Yang Z Y, Chen F, Li X N. 2016. Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil and Environment, 62, 515−521.

Tang C N, Xie J M, Lv J, Li J, Zhang J, Wang C, Liang G P. 2021. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. Plant Physiology and Biochemistry, 162, 395−409.

Tripodi P, Vincenzo C, Venezia A, Cocozza A, Pane C. 2024. Precision phenotyping of wild rocket (Diplotaxis tenuifolia) to determine morpho-physiological responses under increasing drought stress levels using the PlantEye multispectral 3D system. Horticulturae, 10, 496.

Wang P T, Liu W C, Han C, Wang S T, Bai M Y, Song C P. 2024. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 66, 330−367.

Wang S C, Ma L, Xu Y, Wang Y, Zhu N Y, Liu J Z, Dolfing J, Kerr P, Wu Y H. 2020. The unexpected concentration-dependent response of periphytic biofilm during indole acetic acid removal. Bioresource Technology, 303, 122922.

Wang Y, Wang J C, Guo D D, Zhang H B, Che Y H, Li Y Y, Tian B, Wang Z H, Sun G Y, Zhang H H. 2021. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiology and Biochemistry, 167, 140−152.

Wani A S, Hayat S, Ahmad A, Tahir I. 2017. Efficacy of brassinosteroid analogues in the mitigation of toxic effects of salt stress in Brassica juncea plants. Journal of Environmental Biology, 38, 27−36.

Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209−236.

Xin L, Tang M S, Zhang L, Huang W X, Wang X P, Gao Y. 2024. Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse. Agricultural Water Management, 292, 108671.

Xu C, Li Q, Liu X L, Wang H J, Liang X H, Ling F L, Wu Z H, Zhang Z A, Chen Z Y. 2019. Effects of nitrogen supply level on photosynthesis and chlorophyll fluorescence characteristics of rice under salt stress. Emirates Journal of Food and Agriculture, 31, 741−751.

Yang F, Feng L Y, Liu Q L, Wu X L, Fan Y F, Raza M A, Cheng Y J, Chen J X, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Shu K, Yang W Y. 2018. Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany, 150, 79−87.

Yi X P, Hargett S R, Liu H J, Frankel L K, Bricker T M. 2007. The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. Journal of Biological Chemistry, 282, 24833−24841.

Zhang B S, Liu Z, Zhou R N, Cheng P, Li H B, Wang Z Y, Liu Y, Li M Y, Zhao Z Q, Hu Z B, Chen Q S, Wu X X, Zhao Y. 2023. Genome-wide analysis of soybean DnaJA-family genes and functional characterization of GmDnaJA6 responses to saline and alkaline stress. Crop Journal, 11, 1230−1241.

Zhang M H, Cao J F, Zhang T X, Xu T, Yang L Y, Li X Y, Ji F D, Gao Y X, Ali S, Zhang Q Z, Zhu J H, Xie L N. 2022. A putative plasma membrane Na+/H+ antiporter GmSOS1 is critical for salt stress tolerance in Glycine max. Frontiers in Plant Science, 13, 870695.

Zhang Y, Zhou X J, Dong Y T, Zhang F, He Q L, Chen J H, Zhu S J, Zhao T L. 2021. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial Crops and Products, 169, 113671.

Zhang Z Z, He K N, Zhang T, Tang D, Li R J, Jia S F. 2019. Physiological responses of Goji berry (Lycium barbarum L.) to saline-alkaline soil from Qinghai region, China. Scientific Reports, 9, 12057.

Zhao Q, Liu L, Wei Z H, Bai Q Y, Zhao C A, Zhang S H, Pan J L, Yu J X, Zhang S, Wei J. 2024. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle. BMC Plant Biology, 24, 365.

Zhao Q, Shen W Z, Gu Y H, Hu J C, Ma Y, Zhang X L, Du Y L, Zhang Y X, Du J D. 2023. Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosynthetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves. Physiologia Plantarum, 175, e13983.

Zhu L X, Sun H C, Wang R R, Guo C C, Liu L T, Zhang Y J, Zhang K, Bai Z Y, Li A C, Zhu J H, Li C D. 2024. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage. Journal of Integrative Agriculture, 23, 3387−3405.

Zhu X C, Liu S Q, Sun L Y, Song F B, Liu F L, Li X G. 2018. Cold tolerance of photosynthetic electron transport system is enhanced in wheat plants grown under elevated CO2. Frontiers in Plant Science, 9, 933. 

No related articles found!
No Suggested Reading articles found!