Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Mechanisms of topsoil depth drive differences in maize yield and photosynthetic carbon assimilation

Huisi Chen1, 2*, Xiaolong Zhang3*, Shan Zhang1, 2, Ziping Liu1, 2, Zhiming Liu2, Xiwen Shao1, Liying Guo1, Yanqiu Geng1, Lichun Wang1, 2, Yanjie Lv1, 2#, Yongjun Wang1, 2#

1 College of Agronomy, Jilin Agricultural University, Changchun 130118, China

2 Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Major Food Crops, Changchun 130033, China

3 Shandong Academy of Agricultural Sciences, State Key Laboratory of Nutrient Use and Management, Jinan 250100, China

 Highlights 

Increasing topsoil depth can increase maize grain yields.

13C labeling determined photosynthate accumulation under different topsoil depths.

Suitable topsoil depth can achieve high and stable maize yields.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由于不合理耕作方式和气候变化的影响表土深度持续降低,严重制约了玉米产量的可持续提高。然而,表土深度影响作物生理生化的机制不清楚,特别是光合作用碳同化方面。为了研究表土深度对玉米光合过程碳同化和产量的影响,本研究采用双因素随机区组设计,在60,000/hm2常规密度,D1)90,000/hm2高密度,D2)种植密度条件下,构建了10 cm(S1)20 cm(S2)30 cm(S3)40 cm(S4)50 cm(S5)共五个表土深度。结果表明,增加表土深度显著提高了玉米的籽粒产量,在D1D2条件下最大增幅分别为43.6%55.6%增加表土深度也增加了叶绿素含量、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)和光酶活性包括核酮糖-1,5-二磷酸羧化酶(Rubisco)、磷酸烯醇丙酮酸羧化酶(PEPC)和丙酮酸正磷酸二激酶(PPDK。随着这些参数的增加,植株在达到光饱和点时能保持较高的净光合速率(Pnmax,在D1D2条件下最大增幅分别为68.0%75.7%,从而在生理成熟时产生更多的干物质。表土深度的增加使13C光合产物在玉米茎、叶和籽粒中的分布增多从而使植株碳同化能力分配效率以及叶片光合能力增强。综上所述,增加表土深度是确保玉米高产稳产的重要因素,而产量的增加与表土深度变化引起的生理差异密切相关。



Abstract  

Sustainable increase in maize yield is severely constrained by the continuing reduction in topsoil depth due to irrational farming practices and the effects of climate change. However, the mechanisms by which topsoil depth affects crop physiology and biochemistry remain unclear, particularly with respect to photosynthesis and carbon assimilation.  To investigate the effects of topsoil depth on maize photosynthetic processes, carbon assimilation, and yield in the field, we used a two-factor random block design with five topsoil depths of 10 cm (S1), 20 cm (S2), 30 cm (S3), 40 cm (S4), and 50 cm (S5) at two planting densities of 60,000 plants ha1 (conventional density, D1) and 90,000 plants ha1 (high density, D2).  Increasing topsoil depth significantly increased maize grain yield, with maximum increases of 61.7% in D1 and 72.1% in D2.  Increasing topsoil depth also increased chlorophyll content, maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), and photosynthetic enzyme activities, including ribulose-1,5-bisphosphate carboxylase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), and pyruvate orthophosphate dikinase (PPDK).  With the increases in those parameters, plants maintained the highest net photosynthetic rate (Pnmax) when reaching the light saturation point, with maximum increases of 68.0% in D1 and 75.7% in D2, thereby increasing dry matter production at physiological maturity.  The accumulation of 13C-photosynthates in maize stem, leaf, and grain increased with the increase in topsoil depth, indicating increases in carbon assimilation capacity, distribution efficiency, and photosynthetic capacity.  In summary, increasing topsoil depth is an important factor in ensuring high and stable maize yields, and the increase in yield is closely related to the physiological differences caused by changes in topsoil depth.

Keywords:  topsoil depth       grain yield       13C-photosynthate distribution       photosynthesis       photosynthetic enzyme activities       chlorophyll content  
Online: 03 April 2025  
Fund: 

This work was supported by the Jilin Province Key Technology R&D Program, China (20230302004NC), the National Natural Science Foundation of China (51711520318), the China Agriculture Research System (CARS-02-19), and the Jilin Agricultural Science and Technology Innovation Program, China (CXGC2023RCY033). 

Cite this article: 

Huisi Chen, Xiaolong Zhang, Shan Zhang, Ziping Liu, Zhiming Liu, Xiwen Shao, Liying Guo, Yanqiu Geng, Lichun Wang, Yanjie Lv, Yongjun Wang. 2025. Mechanisms of topsoil depth drive differences in maize yield and photosynthetic carbon assimilation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.003

Almaliotis D, Therios I, Karatassiou M. 1996. Effects of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. International Symposium on Irrigation of Horticultural Crops, 449, 529−534.

Baker L A, Habershon S. 2017. Photosynthesis, pigment-protein complexes and electronic energy transport: Simple models for complicated processes. Science Progress, 100, 313−330.

Baker N R, Thomas H C. 1992. Crop photosynthesis: Spatial and temporal determinants. Elsevier, 12, 11−41.

Baker N R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89−113.

Bakker H J I. 1990. The World Food Crisis: Food Security in Comparative Perspective. Canadian Scholars Press, Toronto, Canada.

Bakker M M, Govers G, Rounsevell M D A. 2004. The crop productivity-erosion relationship: An analysis based on experimental work. Catena, 57, 55−76.

Barbier E B, Hochard J P. 2016. Does land degradation increase poverty in developing countries? PLoS ONE, 11, e0152973.

Barbosa L C, Tenelli S, Magalhães P S, Bordonal R O, Cherubin M R, de Lima R P, Castioni G A, Neto J R, Carvalho J L N. 2024. Linking soil physical quality to shoot and root biomass production in scenarios of sugarcane straw removal. European Journal of Agronomy, 152, 127029.

Berhe A A, Barnes R T, Six J, Marín-Spiotta E. 2018. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences, 46, 521−548.

Bidinger F, Musgrave R B, Fischer R A. 1997. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature270, 431−433.

Burke J J. 2001. Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiologia Plantarum, 112, 167−170.

Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R, Nair S K, Das B, Govaerts B, Vinayan M T, Rashid Z, Noor J J, Devi P, San Vicente F, Prasanna B M. 2012. Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Advances in Agronomy, 114, 1−58.

Cao Y, Wang L, Gu W, Wang Y, Zhang J. 2021. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture, 20, 494−510.

Chaves M M, Flexas J, Pinheiro C. 2008. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551−560.

De Costa W A J M. 2000. Principles of Crop physiology: Towards an Understanding of Crop Yield Determination and ImprovementUniversity of Peradeniya Press, Peradeniya, Sri Lanka.

Dai Z, Zhang Y, Wei Y, Cai C. 2024. Impacts of long-term organic manure inputs on cultivated soils with various degradation degrees. Soil and Tillage Research, 236, 105950.

D’Ambrosio N, Arena C, De Santo A V. 2006. Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environmental and Experimental Botany, 55, 248−257.

Dang Y P, Dalal R C, Routley R, Schwenke G D, Daniells I. 2006. Subsoil constraints to grain production in the cropping soils of the north-eastern region of Australia: An overview. Australian Journal of Experimental Agriculture, 46, 19−35.

Doubnerová V, Ryšlavá H. 2011. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180, 575−583.

Drake J E, Darby B A, Giasson M A, Kramer M A, Phillips R P, Finzi A C. 2013. Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences, 10, 821−838.

Fan P, Ming B, Evers J B, Li Y, Li S, Xie R, Anten N P R. 2023. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research, 297, 108927. 

Fan Y, Ma L, Yang J, Ding W, He W, Tang Y, Cui G, Zhang W, Ma S, Ma C, Huang Z. 2023. Night warming from tillering to jointing increases post-anthesis flag leaf photosynthetic capacity and wheat yield. European Journal of Agronomy, 150, 126926.

Farquhar G D, von Caemmerer S, Berry J A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78−90.

Feng G, He X, Coulter J A, Chen Y, Gao Q, Mi G. 2019. Effect of limiting vertical root growth on maize yield and nitrate migration in clay and sandy soils in Northeast China. Soil and Tillage Research195, 104407.

Fu L, Ren H, Xu S, Hu S, Yang J, Liu C. 2021. Planting models and mulching material strategies to reduce bundle sheath cell leakage and improve photosynthetic capacity and maize production in semi-arid climate. Environmental Science and Pollution Research, 28, 2315−2327.

García-Orenes F, Roldán A, Mataix-Solera J, Cerdà A, Campoy M, Arcenegui V, Caravaca F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management, 28, 571−579.

Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science, 327, 812−818.

Gorbunov M Y, Falkowski P G. 2021. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnology and Oceanography, 66, 1−13.

Guan D, Al-Kaisi M M, Zhang Y, Duan L, Tan W, Zhang M, Li Z. 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Research, 157, 89−97.

Gunasekera H K L K, De Costa W A J M, Nugawela A. 2013. Canopy photosynthetic capacity and light response parameters of rubber Hevea brasiliensis with reference to exploitation. Current Agriculture Research Journal, 1, 1−12.

Guo L, Yang Y, Zhao Y, Li Y, Sui Y, Tang C, Jin J, Liu X. 2021. Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degradation & Development, 32, 2849−2860.

Guo R, Zhang N, Wang L, Lin T, Zheng Z, Cui J, Tian L. 2023. Subsoiling depth affects the morphological and physiological traits of roots in film-mulched and drip-irrigated cotton. Soil and Tillage Research, 234, 105826.

Guo X, Liu W, Yang Y, Liu G, Ming B, Xie R, Wang K, Li S, Hou P. 2025. Matching light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture, 24, 1424–1435.

He J, Shi Y, Zhao J, Yu Z. 2020. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. The Crop Journal, 8, 327−340.

Herbrich M, Gerke H H, Sommer M. 2018. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape. Journal of Plant Nutrition and Soil Science, 181, 147−157.

Hu J, Zhao X, Gu L, Liu P, Zhao B, Zhang J, Ren B. 2023. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agricultural Water Management, 289, 108525.

Huang C, Liu Q, Li X, Zhang C. 2019. Effect of intercropping on maize grain yield and yield components. Journal of Integrative Agriculture, 18, 1690−1700.

Jasdanwala R T, Khan A A. 1988. 14C-labelled assimilate distribution in flowering maize plants. Journal of Agronomy and Crop Science, 161, 249−255.

Kaspar T C, Pulido D J, Fenton T E, Colvin T S, Karlen D L, Jaynes D B, Meek D W. 2004. Relationship of corn and soybean yield to soil and terrain properties. Agronomy Journal, 96, 700−709.

Kaushal M, Wani S P. 2016. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68−78.

Kingston-Smith A H, Harbinson J, Williams J, Foyer C H. 1997. Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiology, 114, 1039−1046.

Kouame A K K, Bindraban P S, Kissiedu I N, Atakora W K, Mejahed K E. 2023. Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression approach. Agricultural Systems, 209, 103667.

Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 17, 76−80.

Lal R. 2003. Soil erosion and the global carbon budget. Environment International, 29, 437−450.

Lang Y, Wang M, Zhang G C, Zhao Q K. 2013. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica, 51, 370−378.

Li M, Svoboda V, Davis G, Kramer D, Kunz H H, Kirchhoff H. 2021. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nature Plants7, 979−988.

Li R, Hu D, Ren H, Yang Q, Dong S, Zhang J, Zhao B, Liu P. 2022. How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield. The Crop Journal, 10, 853−863.

Li Y, Liu X, Hao K, Yang Q, Yang X, Zhang W, Cong Y. 2019. Light-response curve of photosynthesis and model fitting in leaves of Mangifera indica under different soil water conditions. Photosynthetica, 57, 796−803.

Liu G, Yang Y, Guo X, Liu W, Xie R, Ming B, Xue J, Wang K, Li S, Hou P. 2022. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha−1. Field Crops Research, 283, 108544.

Liu G, Yang Y, Guo X, Liu W, Xie R, Ming B, Xue J, Wang K, Li S, Hou P. 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha−1. Resources, Conservation and Recycling, 188, 106656.

Liu T, Gu L, Dong S, Zhang J, Liu P, Zhao B. 2015. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 170, 32−39.

Lyles L. 1975. Possible effects of wind erosion on soil productivity. Journal of Soil and Water Conservation, 30, 279−283.

Ma L, Li Y, Wu P, Zhao X, Gao X, Chen X. 2020. Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research, 256, 107924.

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141−1157.

Mielke L N, Schepers J S. 1986. Plant response to topsoil thickness on an eroded loess soil. Journal of Soil and Water Conservation, 41, 59−63.

Montgomery D R. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 13268−13272.

Moonilall N I, Sklenk K A, Nocco M A, Lal R. 2023. Rehabilitative capacity of amendments to restore maize productivity following artificial topsoil erosion / deposition. Field Crops Research, 304, 109178.

Mu X, Chen Q, Chen F, Yuan L, Mi G. 2018. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiology and Biochemistry, 129, 27−34.

Munodawafa A. 2011. Maize grain yield as affected by the severity of soil erosion under semi-arid conditions and granitic sandy soils of Zimbabwe. Physics and Chemistry of the Earth, 36, 963−967.

Nunes-Nesi A, Fernie A R, Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 3, 973−996.

Osewe M, Liu A, Han J. 2023. Sustainable intensification and food security: A panel data assessment of the smallholder maize farmers in Uganda. Global Food Security, 39, 100724.

Parsley K, Hibberd J M. 2006. The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Molecular Biology, 62, 339−349.

Perdomo J A, Capó-Bauçà S, Carmo-Silva E, Galmés J. 2017. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8, 240508.

Prasanna B M, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair S K, Vivek B S, Zhang X, Olsen M, Fan X. 2020. Molecular breeding for nutritionally enriched maize: Status and prospects. Frontiers in Genetics, 10, 1392.

Quinton J N, Govers G, Van Oost K, Bardgett R D. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3, 311−314.

Reguera M, Peleg Z, Abdel-Tawab Y M, Tumimbang E B, Delatorre C A, Blumwald E. 2013. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiology, 163, 1609−1622.

Rivera-Amadoa C, Trujillo-Negrellos E, Molero G, Reynolds M P, Sylvester-Bradley R, Foulkes M J. 2019. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 240, 154−167.

Sayed O H. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321−330.

Shangguan W, Hengl T, Mendes de Jesus J, Yuan H, Dai Y. 2017. Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems, 9, 65−88.

Shao R, Jia S, Tang Y, Zhang J, Li H, Li L, Chen J, Guo J, Wang H, Yang Q, Wang Y, Liu T, Zhao X. 2021. Soil water deficit suppresses development of maize ear by altering metabolism and photosynthesis. Environmental and Experimental Botany, 192, 104651.

Simkin A J, Faralli M, Ramamoorthy S, Lawson T. 2019. Photosynthesis in non-foliar tissues: Implications for yield. The Plant Journal, 101, 1001−1015.

Snappa S S, Blackieb M J, Gilbertc R A, Bezner-Kerrd R, Kanyama-Phirie G Y. 2010. Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 20840−20845.

Soane B D, van Ouwerkerk C. 1994. Soil compaction problems in world agriculture. Developments in Agricultural Engineering, 11, 1−21.

Song X, Li H. 2016. Effects of building shade on photosynthesis and chlorophyll fluorescence of Euonymus fortunei. Acta Ecologica Sinica, 36, 350−355.

Sui Y, Jiao X, Liu X, Zhang X, Ding G. 2013. Response of soil microbial biomass and enzyme activity to soil fertilization in an eroded farmland of Chinese mollisols. Communications in Soil Science and Plant Analysis, 44, 2809−2819.

Sun H, Shi Y, Zhao P, Long G, Li C, Wang J, Qiu D, Lu C, Ding Y, Liu L, He S. 2023. Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils. Science of the Total Environment, 868, 161557.

Tao Z, Sui P, Chen Y, Li C, Nie Z, Yuan S, Shi J, Gao W. 2013. Subsoiling and ridge tillage alleviate the high temperature stress in spring maize in the North China Plain. Journal of Integrative Agriculture, 12, 2179−2188.

Tazoe Y, Noguchi K O, Terashima I. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant, Cell & Environment, 29, 691−700.

Tilse M J, Bishop T F A, Triantafilis J, Filippi P. 2022. Mapping the impact of subsoil constraints on soil available water capacity and potential crop yield. Crop and Pasture Science, 73, 636−651.

Todorenko D, Timofeev N, Kovalenko I, Kukarskikh G, Matorin D, Antal T. 2020. Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.). Planta, 251, 1−13.

Usuda H. 1984. Variations in the photosynthesis rate and activity of photosynthetic enzymes in maize leaf tissue of different ages. Plant and Cell Physiology, 25, 1297−1301.

Ványiné A S, Tóth B, Nagy J. 2012. Effect of nitrogen doses on the chlorophyll concentration, yield and protein content of different genotype maize hybrids in Hungary. African Journal of Agricultural Research, 7, 2546−2552.

Wang K, Zhu J, Xu X, Li T, Wang X, Warner T A, Cheng T, Zhu Y, Cao W, Yao X, Zhang Z. 2023. Quantitative monitoring of salt stress in rice with solar-induced chlorophyll fluorescence. European Journal of Agronomy, 150, 126954.

Wang Y, Lyu H, Yu A, Wang F, Li Y, Wang P, Shang Y, Yang X, Chai Q. 2024. No-tillage mulch with green manure retention improves maize yield by increasing the net photosynthetic rate. European Journal of Agronomy, 159, 127275.

Wangmo P, Thinley K, Nakashima T, Kato Y. 2024. Agronomic assessment of the yield variability and yield gap of maize in Bhutan. Crop and Environment, 3, 25−32.

Wu Y, Qiang L, Rong J, Wei C, Liu X, Kong F, Ke Y, Shi H, Yuan J. 2019. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 18, 1246−1256.

Xia Z, Wu M, Bai J, Zhang S, Zhang G, Gong Y, Yang Y, Lu H. 2023. Root zone temperature regulates potassium absorption and photosynthesis in maize (Zea mays). Plant Physiology and Biochemistry, 198, 107694.

Ye M, Wang Z, Wu M, Li H, Gu J, Yang J, Zhang H, Zhang Z. 2024. Optimized leaf anatomy improves photosynthetic producing capacity of mid-season indica rice in the Yangtze River Basin during the genetic improvement. European Journal of Agronomy, 158, 127196.

Ye Y, Wen Z, Yang H, Lu W, Lu D. 2020. Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize. Journal of Integrative Agriculture, 19, 2216−2228.

Zelitch I. 1982. The close relationship between net photosynthesis and crop yield. BioScience, 32, 796−802.

Zhai L, Wang Z, Song S, Zhang L, Zhang Z, Jia X. 2020. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agricultural Water Management, 245, 106600.

Zhang M, Xing L, Ren X, Zou J, Song F, Wang L, Xu M. 2022. Evidence of arrested silk growth in maize at high planting density using phenotypic and transcriptional analyses. Journal of Integrative Agriculture, 21, 3148−3157.

Zhang S, Chen X, Jia S, Liang A, Zhang X, Yang X, Wei S, Sun B, Huang D, Zhou G. 2015. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil & Tillage Research, 154, 84−90.

Zhang S, Li S. 2010. Domestic and Foreign Corn Industrial Technology Development Report. China Agricultural Science and Technology Press, Beijing. (in Chinese)

Zhang X, Hou W, Gou Z, Jia S, Li H, Gao Q, Li X. 2024a. Exogenous sulfur application can effectively alleviate iron deficiency yellowing in peanuts and increase pod yield. European Journal of Agronomy, 159, 127252.

Zhang X, Kong Y, Lv Y, Yao F, Cao Y, Shao X, Geng Y, Wang L, Wang Y. 2024b. Increased topsoil depth required to support increased grain yield production in high density maize. Field Crops Research, 308, 109282.

Zhang X, Pu P, Tang Y, Zhang L, Lv J. 2019. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit. Plant Physiology and Biochemistry, 142, 163−172.

Zhou K, Sui Y, Liu X, Zhang X, Jin J, Wang G, Herbert S J. 2015. Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded Mollisols in Northeast China. Field Crops Research, 171, 138−145.

Zhu T, Li J, Liu Y, Tong X, Yu Q. 2020. Leaf photosynthetic light response of summer maize: Comparison of models and analysis of parameters. Photosynthetica, 58, 19−28.

No related articles found!
No Suggested Reading articles found!