Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 6D in bread wheat

Jun Zhu1, 3*, Lulu Gao1, 4*, Jiazheng Yu1, Guanghui Yang1, Mingshan You1, Yufeng Zhang1, Yirong Zhang2#, Lingling Chai1#

1 Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China

2 National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China

3 Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou 225007, China

4 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China

 Highlights: 

1. Leaf rolling is strongly correlating to photosynthesis, transpiration, and respiration.

2. The leaf rolling index QTL, QLRI.cau-6D, was identified by using F2 and F2:3 populations.

3. TraesCS6D02G237000 (TaHDZIV-D1) was validated as controlling leaf rolling through knockout and overexpression methods.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

卷叶是小麦(Triticum aestivum L.的一个重要形态特征,其与光合作用、蒸腾作用和呼吸作用密切相关,尤其是在非生物胁迫条件下,因此小麦卷叶数量性状位点(QTL)或基因的鉴定对小麦育种至关重要。本研究在农大3753的背景下鉴定到一株EMS诱导的叶片卷曲突变体Y536,将其与非卷叶京411杂交后获得F2F2:3群体用于卷叶位点定位。在6DL染色体上鉴定到一个与卷叶指数(LRI)高度连锁的公共SSR标记,在其周围开发标记并进行QTL分析发现此QTLQLRI.cau-6D的LOD值在10.0013.32之间,可解释7.69%10.86%的表型变异。根据双亲编码区序列差异和基因功能注释,确定TraesCS6D02G237000TaHDZIV-D1为候选基因。与野生型对照相比,TaHDZIV-A1/B1/D1在普通小麦材料“JW1”中的敲除系显著增加了LRITaHDZIV-D1“JW1”中的过表达系显著降低了LRI直到相反的方向。此外,遗传证据证明TaHDZIV-A1/B1/D1以剂量依赖性方式影响叶片卷曲。总之,这些发现为普通小麦卷叶的遗传基础提供了一个新的视角



Abstract  

Leaf rolling is an important morphological trait in wheat (Triticum aestivum L.), strongly correlating to photosynthesis, transpiration, and respiration, especially in abiotic stress conditions.  Identification of quantitative trait loci (QTLs)/genes underling rolling leaf is essential for wheat breeding.  In this study, one EMS-induced mutant Y536 was isolated in Nongda3753 background with extreme abaxial rolling leaf.  The F2 and F2:3 populations derived from a cross between Jing411 and mutant Y536 with contrasting leaf rolling morphology were developed to map locus controlling leaf rolling.  A public SSR marker was isolated on chromosome 6DL that held a high linkage level with leaf rolling index (LRI).  Quantitative trait locus (QTL) analysis revealed a stable QTL associated with LRI, named QLRI.cau-6D, which explained 7.69 to 10.86% of the total phenotypic variation and had LOD scores ranging from 10.00 to 13.32.  TraesCS6D02G237000 (TaHDZIV-D1) was the priority candidate gene according to coding sequence differences between two parents and gene functional annotations.  Consistently, knockout of TaHDZIV-A1/B1/D1 in common wheat line ‘JW1’ significantly increased LRI compared to the wild type, as well as overexpression of TaHDZIV-D1 in ‘JW1’ significantly decreased LRI until opposite direction.  Moreover, genetic evidence suggested that a dose-dependent manner in TaHDZIV-A1/B1/D1 affects leaf rolling.  Collectively, these findings provide a novel and recent insight into the genetic base of leaf rolling in common wheat.

Keywords:  wheat        leaf rolling        QTL        TaHDZIV        homeodomain leucine zipper  
Online: 27 March 2025  
Fund: 


This work was supported by the National Key Research and Development Program of China (2023YFD1200403) and the Chinese Universities Scientific Fund (2024TC162).

About author:  #Correspondence Lingling Chai, Tel: +86-10-62734072, E-mail: llchai2019@cau.edu.cn; Yirong Zhang, Tel: +86-10-62734368, E-mail: zhangyr@cau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Jun Zhu, Lulu Gao, Jiazheng Yu, Guanghui Yang, Mingshan You, Yufeng Zhang, Yirong Zhang, Lingling Chai. 2025. Mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 6D in bread wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.027

Ali Z, Merrium S, Habib-ur-Rahman M, Hakeem S, Saddique M A B, Sher M A. 2022. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop-A review. Environmental Science and Pollution Research, 29, 30967-30985.

Bian R, Liu N, Xu Y, Su Z, Chai L, Bernardo A, Amand P S, Fritz A, Zhang G, Rupp J, Akhunov E, Jordan K W, Bai G. 2023. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. Theoretical and Applied Genetics, 136, 52.

Cai Y, Bartholomew E S, Dong M, Zhai X, Yin S, Zhang Y, Feng Z, Wu L, Liu W, Shan N, Zhang X, Ren H, Liu X. 2020. The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. Journal of Experimental Botany, 71, 5425-5437.

Chen Z, Liu D, Chang Y, Cui X, Wu J, Ai P, Sun X, Lu T, Zhang Z. 2022. RLM1, encoding an R2R3 MYB transcription factor, regulates the development of secondary cell wall in rice. Frontiers in Plant Science, 13, 905111.

Dong C, Zhang L, Zhang Q, Yang Y, Li D, Xie Z, Cui G, Chen Y, Wu L, Li Z, Liu G, Zhang X, Liu C, Chu J, Zhao G, Xia C, Jia J, Sun J, Kong X, Liu X. 2023. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nature Communications, 14, 836.

Elhiti M, Stasolla C. 2009. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signaling and Behavior, 4, 86-88.

Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G. 2012. Rolling‐leaf14 is a 2OG‐Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnology Journal, 10, 524-532.

Gao L, Yang G, Li Y, Fan N, Li H, Zhang M, Xu R, Zhang M, Zhao A, Ni Z, Zhang Y. 2019 Fine mapping and candidate gene analysis of a QTL associated with leaf rolling index on chromosome 4 of maize (Zea mays L.). Theoretical and Applied Genetics, 132, 3047-3062.

Gao Y, Gao S, Xiong C, Yu G, Chang J, Ye Z, Yang C. 2015. Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato. Plant Physiology and Biochemistry, 96, 141-153.

Han Y, Yang J, Wu H, Liu F, Qin B, Li R. 2023. Improving rice leaf shape using CRISPR/Cas9-mediated genome editing of SRL1 and characterizing its regulatory network involved in leaf rolling through transcriptome analysis. International Journal of Molecular Sciences, 24, 11087.

Hayta S, Smedley M A, Clarke M, Forner M, Harwood W A. 2021. An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Current Protocols, 1, e58.

Ingram G C, Boisnard-Lorig C, Dumas C, Rogowsky P M. 2000. Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant Journal, 22, 401-414.

Ingram G C, Magnard J L, Vergne P, Dumas C, Rogowsky P M. 1999. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. ‌Plant Molecular Biology, 40, 343-354.

Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. 2002. Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 129, 440-450.

Javelle M, Klein-Cosson C, Vernoud V, Boltz V, Maher C, Timmermans M, Depège-Fargeix N, Rogowsky P M. 2011. Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: Preferential expression in the epidermis. Plant Physiology, 157, 790-803.

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. 2010 Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42, 541-544.

Juarez M T, Kui J S, Thomas J, Heller B A, Timmermans M C. 2004 microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 428, 84-88.

Kadioglu A, Terzi R. 2007. A dehydration avoidance mechanism: Leaf rolling. Botanical Review, 73, 290-302.

Kosambi D D. 1944. The estimation of map distances from recombination values. Annals of Eugenics, 12, 172-175. Reprinted with permission from John Wiley and Sons, Inc. In: Ramaswamy R, eds., D D Kosambi, Springer, New Delhi. pp. 125-130. 

Kumar R, Mamrutha H M, Kaur A, Venkatesh K, Sharma D, Singh G P. 2019. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Molecular Biology Reports, 46, 1845-1853.

Li H, Murray T D, McIntosh R A, Zhou Y. 2019. Breeding new cultivars for sustainable wheat production. Crop Journal, 7, 715–717.

Liu H. 2016. Phenotypic characterization and gene mapping of a rolled leaf mutant in maize (Zea mays L.). Ph D thesis, Chinese Academy of Agricultural Sciences, China(in Chinese)

Liu X, Deng X J, Li C Y, Xiao Y K, Zhao K, Guo J, Yang X R, Zhang H S, Chen C P, Luo Y T, Tang Y L, Yang B, Sun C H, Wang P R. 2022. Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 23, 5781.

Liu X, Li M, Liu K, Tang D, Sun M, Li Y, Shen Y, Du G, Cheng Z. 2016. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. Journal of Experimental Botany, 67, 2139-2150.

Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S, Liu J, Ding P, Habib A, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Wang J, Li W, Pu Z, Zheng Y, Wei Y, et al. 2020. Flag leaf size and posture of bread wheat: Genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 133, 297-315.

Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. 2023. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. Plant Biotechnology Journal, 22, 833-847.

Manavella P A, Dezar C A, Bonaventure G, Baldwin I T, Chan R L. 2008. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant Journal, 56, 376-388.

Meng Q, Yuan J, Chen Y, Zhao W. 2011. Discovery and characters of a novel maize mutant with rolled leaves. Journal of Maize Sciences, 19, 79–81. (in Chinese)

Merrium S, Ali Z, Habib-ur-Rahman M, Hakeem S, Khalid M A. 2022. Leaf rolling and leaf angle improve fog capturing and transport in wheat; adaptation for drought stress in an arid climate. Botanical Studies, 63, 13.

Van Ooijen J W. 2006. Joinmap 4.0: Software For the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma BV, Wageningen, Netherlands.

O’toole J, Cruz R, Singh T. 1979. Leaf rolling and transpiration. Plant Science Letters, 16, 111-114.

Peleg Z V I, Fahima T, Krugman T, Abbo S, Yakir D A N, Korol A B, Saranga Y. 2009. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell and Environment, 32, 758-779.

Rebetzke G, Morrison A, Richard R, Bonnett D, Moore C. 2001. Genotypic variation for leaf rolling in wheat. In: Proceedings of the Wheat Breeding Society of Australia Conference (Mildura, Australia). Wheat Breeding Society of Australia, Australia. pp. 172-174.

Sarieva G E, Kenzhebaeva S S, Lichtenthaler H K. 2010. Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russian Journal of Plant Physiology, 57, 28-36.

Schrick K, Ahmad B, Nguyen H V. 2023. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. Current Opinion in Plant Biology, 75, 102417.

Timme R E, Bachvaroff T R, Delwiche C F. 2012. Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE, 7, e29696.

Timmermans M C, Schultes N P, Jankovsky J P, Nelson T. 1998. Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development, 125, 2813-2823.

Verma A, Niranjana M, Jha S K, Mallick N, Agarwal P, Vinod. 2020. QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Scientific Reports, 10, 18696.

Wang S, Basten C J, Zeng Z B. 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.

Wang W, Wang Z, Li X, Ni Z, Hu Z, Xin M, Peng H, Yao Y, Sun Q, Guo W. 2020. SnpHub: An easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. Gigascience, 9, giaa060.

Xie L, Yan T, Li L, Chen M, Hassani D, Li Y, Qin W, Liu H, Chen T, Fu X, Shen Q, Rose J K C, Tang K. 2021. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytologist, 231, 2050-2064.

Xu D. 2008. Gene mapping for roll-leaf-above-ear and the other planttype and ear traits in maize (Zea mays L.). Ph D thesis, Southwest University, China(in Chinese)

Yang X, Wang J, Mao X, Li C, Li L, Xue Y, He L, Jing R. 2022. A locus controlling leaf rolling degree in wheat under drought stress identified by bulked segregant analysis. Plants, 11, 2076.

Yu N, Liang Y, Wang Q, Peng X, He Z, Hou X. 2022. Transcriptomic analysis of OsRUS1 overexpression rice lines with rapid and dynamic leaf rolling morphology. Scientific Reports, 12, 6736.

Zalewski C S, Floyd S K, Furumizu C, Sakakibara K, Stevenson D W, Bowman J L. 2013. Evolution of the class IV HD-zip gene family in streptophytes. Molecular Biology and Evolution, 30, 2347-2365.

Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. 2009. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 21, 719–735.

Zhang Q, Zheng T, Hoang L, Wang C, Nafisah, Joseph C, Zhang W, Xu J, Li Z. 2016. Joint mapping and allele mining of the rolled leaf trait in rice (Oryza sativa L.). PLoS ONE, 11, e0158246.

Zhou L, Chen S, Cai M, Cui S, Ren Y, Zhang X, Liu T, Zhou C, Jin X, Zhang L, Wu M, Zhang S, Cheng Z, Zhang X, Lei C, Lin Q, Guo X, Wang J, Zhao Z, Jiang L, et al. 2023. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. Journal of Integrative Plant Biology, 65, 1408-1422.

Zhu Q, Yu S, Chen G, Ke L, Pan D. 2017. Analysis of the differential gene and protein expression profile of the rolled leaf mutant of transgenic rice (Oryza sativa L.). PLoS ONE, 12, e0181378.

Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. 2011. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiology, 156, 1589-1602.

No related articles found!
No Suggested Reading articles found!