Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Characterization and genetic identification of a low-temperature-sensitive wheat apical spike aberrance mutant

Tongzhu Wang1*, Bin Chen1*, Yaoyao Yang1*, Ziqiang Mo1, Zhaoyong Zeng2, Yanlin Liu1, Huaping Tang1, Jian Ma1#, Guangdeng Chen2#

1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China

2 College of Resources, Sichuan Agricultural University, Chengdu 611130, China

 Highlights: 

A low-temperature-sensitive wheat mutant exhibiting apical spike aberration, designated as lwasa-B1, was identified and comprehensively characterized.

Integrated analyses of BSE-Seq, gene mapping, transcriptomic, and metabolomic data revealed TraesCS4B02G023800 as a key candidate gene associated with the lwasa-B1 mutant phenotype.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

穗部发育是决定小麦产量的关键因素,穗部的耐冷性对保持育性和生产力至关重要。本研究对穗部顶端畸形突变体lwasa-B1进行了全面的鉴定和分析,结果表明,lwasa-B1是一个低温敏感突变体,在15°C以下穗部发育受到明显的改变,导致其耐冷性降低。与野生型相比,低温胁迫下的lwasa-B1表现出生长延迟、分蘖增多以及小穗退化。lwasa-B1的过氧化氢酶、过氧化物酶和生长素活性显著降低,而丙二醛和赤霉素含量显著升高。利用代谢组学和转录组综合分析,推测lwasa-B1可能参与植物激素信号转导和苯丙烷类代谢调控途径。将目标基因定位于4B染色体短臂上标记k_sau_4B_17478331k_sau_4B_19541181之间,遗传距离为2.1cM结合BSE-Seq、转录组学和代谢组学联合分析,推测TraesCS4B02G023800是与lwasa-B1相关的潜在关键基因。本研究揭示了lwasa-B1对低温胁迫的表型和生理反应,并挖掘了一个可能调控小麦穗退化的候选基因。本研究初步解析了低温胁迫下小麦穗退化的调控机制,为小麦耐低温品种的选育提供了理解基础。



Abstract  

Spike development is a key factor in determining wheat yield, and cold tolerance during the spike’s vulnerable stages is essential for preserving both fertility and productivity.  This study presents a comprehensive characterization of the apical spike aberrance mutant lwasa-B1, which was generated through ethyl methanesulfonate mutagenesis of the wheat cultivar Chuannong 16, and its response to low-temperature stress.  The mutant lwasa-B1 exhibited reduced cold tolerance, with a critical temperature threshold identified between 13-15°C.  Under low-temperature stress, lwasa-B1 showed delayed growth, increased tillering, and varying degrees of spike degradation.  Compared to the wild type, lwasa-B1 demonstrated significantly lower enzymatic activities of catalase, peroxidase, and auxin, while levels of malondialdehyde and gibberellin were markedly higher. Integrated metabolomic and transcriptome analyses suggest that lwasa-B1 may be implicated in plant hormone signal transduction and phenylpropanoid metabolic regulation pathways.  A target gene was mapped to the chromosome arm 4BS, within a 2.07 Mb region, bounded by the markers k_sau_4B_17478331 and k_sau_4B_19541181. The integrated analysis, encompassing BSE-Seq, transcriptomics, and metabolomics, has identified TraesCS4B02G023800 as a potentially key gene associated with lwasa-B1.  This research delineates the phenotypic and physiological responses of lwasa-B1 to low-temperature stress and nominates a candidate gene potentially responsible for spike degradation.  The study provides a preliminary dissection of the regulatory mechanisms underlying spike degradation in wheat under low-temperature stress, contributing significant insights for wheat breeding programs.

Keywords:  wheat       spike       low-temperature       BSE-seq       linkage map  
Received: 22 December 2024   Online: 22 March 2025  
Fund: 

This research was supported by the National Key R&D Program of China (2023YFD1201900), the Sichuan Province Science Foundation for Distinguished Young Scholars, China (2022JDJQ0006).  

About author:  #Correspondence Jian Ma, E-mail: jianma@sicau.edu.cn; Guangdeng Chen, E-mail: gdchen@sicau.edu.cn * Contributed equally to this paper.

Cite this article: 

Tongzhu Wang, Bin Chen, Yaoyao Yang, Ziqiang Mo, Zhaoyong Zeng, Yanlin Liu, Huaping Tang, Jian Ma, Guangdeng Chen. 2025. Characterization and genetic identification of a low-temperature-sensitive wheat apical spike aberrance mutant. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.020

Allen D J, Ort D R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6, 36-42.

Begcy K, Nosenko T, Zhou L Z, Fragner L, Weckwerth W, Dresselhaus T. 2019. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology, 181, 683-700.

Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, et al. 2011. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894.

Cao H, Han Y, Li J, Ding M, Li Y, Li X, Chen F, Soppe W J J, Liu Y. 2020. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway. Journal of Experimental Botany, 71, 919-933.

Chen Y X, Fu L S, Wang X, Li Z. 2010. Effect of freezing stress on membrane permeability and MDA content in the re-growth plant of winter wheat cultivars. Journal of Northeast Agricultural University, 41, 10-16.

Deng W, Casao M C, Wang P, Sato K, Hayes P M, Finnegan E J, Trevaskis B. 2015. Direct links between the vernalization response and other key traits of cereal crops. Nature Communications, 6, 5882.

Dong N Q, Lin H X. 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 63, 180-209.

Fan Y, Zhang Y, Tang Y, Xie B, He W, Cui G, Yang J, Zhang W, Ma S, Ma X, Zhang H, Huang Z. 2024. Wheat response to winter night warming based on physiological and transcriptome analyses. Journal of Integrative Agriculture, 2025, 24: 1044-1064..

Faricelli M E, Valárik M, Dubcovsky J. 2010. Control of flowering time and spike development in cereals: The earliness per se Eps-1 region in wheat, rice, and Brachypodium. Functional & Integrative Genomics, 10, 293-306.

Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. 2024. PHGD: An integrative and user-friendly database for plant hormone-related genes. iMeta, 3, e164.

Ganeshan S, Vitamvas P, Fowler D B, Chibbar R N. 2008. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. Journal of Experimental Botany, 59, 2393-2402.

Han Y, Wang Y, Zhai Y, Wen Z, Liu J, Xi C, Zhao H, Wang Y, Han S. 2022. OsOSCA1.1 mediates hyperosmolality and salt stress sensing in Oryza sativa. Biology, 11, 678.

Hou F, Peng Y, Han X, Que B, Chaojian G, Chaowei S, Yao H, Hongyu Z. 2018. Identification and gene mapping of a panicle apical abortion mutant (paa1331) in rice. Chinese Science Bulletin, 63, 3192-3203.

Ji H, Xiao L, Xia Y, Song H, Liu B, Tang L, Cao W, Zhu Y, Liu L. 2017. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 243, 33-42.

Kim E J, Hong W J, Kim Y J, Jung K H. 2022. Transcriptome analysis of triple mutant for OsMADS62, OsMADS63, and OsMADS68 reveals the downstream regulatory mechanism for pollen germination in rice (Oryza sativa). Crop Genome Editing and Plant Breeding Innovation, 23, 239.

Kim Y J, Jeong H Y, Kang S Y, Silva J, Kim E J, Park S K, Jung K H, Lee C. 2020. Physiological importance of pectin modifying genes during rice pollen development. International Journal of Molecular Sciences, 21, 4840.

Kippes N, Zhu J, Chen A, Vanzetti L, Lukaszewski A, Nishida H, Kato K, Dvorak J, Dubcovsky J. 2014. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Molecular Genetics and Genomics, 289, 47-62.

Konecny T, Nikoghosyan M, Binder H. 2023. Machine learning extracts marks of thiamines role in cold acclimation in the transcriptome of Vitis vinifera. Frontiers in Plant Science, 14, 1303542.

Kopecka R, Kameniarova M, Cerny M, Brzobohaty B, Novak J. 2023. Abiotic stress in crop production. International Journal of Molecular Sciences, 24, 6603.

Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers M I, Roth M G, Bi K, Teravest D, Weebadde P, Kramer D M. 2016. MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 3, 160592.

Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J. 2019. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development, 146, dev175398.

Li X, Zhang X, Liu G, Tang Y, Zhou C, Zhang L, Lv J. 2020. The spike plays important roles in the drought tolerance as compared to the flag leaf through the phenylpropanoid pathway in wheat. Plant Physiology and Biochemistry, 152, 100-111.

Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X. 2021. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnology Journal, 19, 1141-1154.

Liu L, Xia Y, Liu B, Chang C, Xiao L, Shen J, Tang L, Cao W, Zhu Y. 2020. Individual and combined effects of jointing and booting low-temperature stress on wheat yield. European Journal of Agronomy, 113, 125989.

Liu T, Wang J, Chen L, Liu S, Liu T, Yu L, Guo J, Chen Y, Zhang Y, Song B. 2023. ScAREB4 promotes potato constitutive and acclimated freezing tolerance associated with enhancing trehalose synthesis and oxidative stress tolerance. Plant, Cell and Environment, 46, 3839-3857.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Luo J, Zhou J, Zhang J. 2018. Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19, 259.

Mansfeld, Grumet R. 2018. QTLseqr: An R package for bulk segregant analysiswith next-generation sequencing. The Plant Genome, 2, 180006.

Masoomi-Aladizgeh F, Najeeb U, Hamzelou S, Pascovici D, Amirkhani A, Tan D K Y, Mirzaei M, Haynes P A, Atwell B J. 2021. Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage. Plant, Cell and Environment, 44, 2150-2166.

Pagnussat G C, Alandete-Saez M, Bowman J L, Sundaresan V J S. 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science, 324, 1684 - 1689.

Ramalho J C, Quartin V L, Leit O E, Campos P S, Carelli M L C, Fahl J I, Nunes M A. 2003. Cold acclimation ability and photosynthesis among species of the tropical coffea genus. Plant Biology, 5, 631-641.

Rubio S, Noriega X, Perez F J. 2019. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Annals of Botany, 123, 681-689.

Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya Y A, Hajirezaei M R, Rutten T, Hensel G, Melzer M, Kumlehn J, Von Wirén N, Mock H P, Schnurbusch T. 2023. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. The Plant Cell, 35, 3973-4001.

Song W, Hao Q, Cai M, Wang Y, Zhu X, Liu X, Huang Y, Nguyen T, Yang C, Yu J, Wu H, Chen L, Tian Y, Jiang L, Wan J. 2020. Rice OsBT1 regulates seed dormancy through the glycometabolism pathway. Plant Physiology and Biochemistry, 151, 469-476.

Thakur P, Kumar S, Malik J A, Berger J D, Nayyar H. 2010. Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 67, 429-443.

Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra A N, Mittler R, Shintani D. 2009. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology, 151, 421-432.

Valluru R, Link J, Claupein W. 2012. Consequences of early chilling stress in two Triticum species: Plastic responses and adaptive significance. Plant Biology, 14, 641-651.

Verma S, Attuluri V P S, Robert H S. 2021. An essential function for auxin in embryo development. Cold Spring Harbor Perspectives in Biology, 13, a039966.

Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 23, 680-694.

Wang J, Zhang T, Shen X, Liu J, Zhao D, Sun Y, Wang L, Liu Y, Gong X, Liu Y, Zhu Z J, Xue F. 2016. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics, 12, 7.

Xu M, Ye X, Wang W, Wei C, Zhang J, Tu J. 2015. Genetic analysis and molecular mapping of a high threshold and low temperature-sensitive mutant in rice (Oryza sativa L.) at the seedling stage. Euphytica, 203, 71-82.

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 103, 19581-19586.

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, 1640-1644.

Yu X, Jiang Y, Yao H, Ran L, Zang Y, Xiong F. 2022. Cytological and molecular characteristics of delayed spike development in wheat under low temperature in early spring. The Plant Journal, 10, 840-852.

Zafar S A, Patil S B, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. 2020. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytologist, 225, 356-375.

Zeng Z, Song S, Ma J, Hu D, Xu Y, Hou Y, Chen H, Chen Y, Huo Y, Li Y, Tang X, Lan T, Gao X, Chen G. 2023. QTL mapping of nitrogen use efficiency traits at the seedling and maturity stages under different nitrogen conditions in barley (Hordeum vulgare L.). Plant Breeding, 143, 155-167.

Zhang F, Jiang N, Zhang H, Huo Z, Yang Z. 2023. Effect of low temperature on photosynthetic characteristics, senescence characteristics, and endogenous hormones of winter wheat “Ji Mai 22” during the jointing stage. Agronomy, 13, 2650.

Zhang Y, Liu L, Chen X, Li J. 2022. Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics. Plants, 11, 389.

Zhang Z, Fu Y, Yang X, Yuan M, Zheng X, Luo X, Zhang M, Xie L, Shu K, Reinbothe S, Reinbothe C, Wu F, Feng L, Du J, Wang C, Gao X, Chen Y, Zhang Y, Li Y, Tao Q, et al. 2023. Singlet oxygen induces cell wall thickening and stomatal density reducing by transcriptome reprogramming. The Journal of Biological Chemistry, 299, 105481.

Zhao Z, Zhang Y, Liu X, Zhang X, Liu S, Yu X, Ren Y, Zheng X, Zhou K, Jiang L, Guo X, Gai Y, Wu C, Zhai H, Wang H, Wan J. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Developmental Cell, 27, 113-122.

No related articles found!
No Suggested Reading articles found!