Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Faster and more wheat production governed by LED light in controlled environment agriculture

Xiaolei Guo1, 2, 3, Zhimin Wang2, Mingjie Li1, Zhongyi Zhang1, Xuzhang Xue3#, Yinghua Zhang2#, Li Gu1#

1 College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China 

3 National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China

 Highlights

(1) Wheat could complete its life cycle and produce seeds in a controlled environment with LED lighting.

(2) The long-day condition combined with a spectrum rich in red light contributed to faster and more wheat production.

(3) Red light improved grain number per spike and yield by enhancing carbohydrate supply and accelerating pollen development within the shortened growth time.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦(Triticum aestivum L.)在保障全球粮食安全中发挥着重要的作用,但田间种植受限于土地资源和环境条件,通常每年只能成熟一次,且产量波动较大,限制了其改良速度,难以满足未来的粮食需求。为探究受控环境中小麦生长发育和产量建成的潜力,本试验利用植物工厂,以“永良4号”春小麦为材料,设置了5种光处理,分别为12 h光照+白光质(P12W),17 h光照+白光质(P17W),22 h光照+白光质(P22W),22 h光照+红:绿:蓝光质=6:3:2P22RGB)和22 h光照+红:蓝光质=6:1P22RB)。结果表明,在受控环境中,小麦可完成其生命周期,其中,延长光照时间(从12 h17 h再到22 h)能够加速小麦的发育,特别是缩短花前生长阶段所需的时间。但不容忽视的,延长光照时间,尤其P22W处理,会导致光胁迫加剧,不仅影响小麦株高、茎数等外观形态和干物质积累,而且缩短的花前生长阶段阻碍了花粉的持续发育,造成穗粒数和产量的显著降低。有趣地,在长光照条件下增加红光(如P22RB处理)能够改善干物质积累、增加碳水化合物向生殖组织的转运以及加快孢粉素的生物合成,有助于小麦植株形态和籽粒产量的恢复。总体而言,控环境中采用P17WP22RB处理为代表的优化光制度,每年可生产5~6代小麦,产量达到3.16~5.87 kg m⁻² yr⁻¹,是大田种植的3.59~6.68倍。因此,在受控环境中采用适宜LED光制度是实现小麦早熟高产双重目标协同的有效途径。



Abstract  

Wheat (Triticum aestivum L.) is a major food crop grown worldwide; yet, field-grown wheat is generally restricted to only one generation per year and has a fluctuating yield, limiting wheat improvement and failing to meet future food demand.  To minimize generation time and increase total annually wheat production, five light regimens with varied day length and spectral distribution, including 12 h light/12 h dark+white light (P12W), 17 h light/7 h dark+white light (P17W), 22 h light/2 h dark+white light (P22W), 22 h light/2 h dark+red:green:blue light=6:3:2 (P22RGB), and 22 h light/2 h dark+red:blue light=6:1 (P22RB), were developed by adjusting the light emitting diodes (LEDs) in the controlled environment.  The results showed that controlled wheat agriculture illuminated by LED sources equipped with various day lengths and spectral distributions had the potential for “faster” and “more” grain production.  Prolonged day length (from 12 h to 17 h and then to 22 h) accelerated wheat development, particularly shortening the duration before flowering, and that the longer the prolonged time, the earlier the flowering.  However, 22 h day length (e.g., P22W treatment) would affect plant morphological traits, reduce dry matter accumulation, and result in a loss of yield-related components due to increased stress and disrupted pollen development.  Surprisingly, regulating the spectral distribution towards the red-light region under long-day conditions (e.g., P22RB treatment) could partially restore the grain yield of wheat.  The light regime with a rich red-light region contributed to dry matter accumulation, carbohydrate flow to reproductive tissues, and sporopollenin biosynthesis, resulting in improved plant morphology and grain yield in wheat.  Collectively, the optimized light regimes, represented by P17W and P22RB treatments in controlled environment agriculture, can produce 5-6 generations of wheat per year, yielding 3.16-5.87 kg m-2 yr-1, which is 3.59-6.68 times higher than field cultivation.  Thus, conducting appropriate LED light regimens is a favorable way to achieve the dual goals of “faster and more” in controlled wheat cultivation. 

Keywords:  day length       developmental rate       spectral distribution       wheat       yield components  
Received: 22 December 2024   Online: 22 March 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (32472227), the National and Local Joint Engineering Laboratory for Agricultural Internet of Things, China (PT2022-23), and the earmarked fund for China Agriculture Research System (CARS-3). 

About author:  #Correspondence Xuzhang Xue, E-mail: xuexz1967@163.com; Yinghua Zhang, E-mail: yhzhang@cau.edu.cn; Li Gu, E-mail: guli5101@163.com

Cite this article: 

Xiaolei Guo, Zhimin Wang, Mingjie Li, Zhongyi Zhang, Xuzhang Xue, Yinghua Zhang, Li Gu. 2025. Faster and more wheat production governed by LED light in controlled environment agriculture. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.019

An L, Xu X, Tang H, Zhang M, Hou Z, Liu Y, Zhao Z, Feng H, Xu S, Wang X. 2006. Ethylene production and 1-aminocyclopropane-1-carbo-xylate (ACC) synthase gene expression in tomato (Lycopsicon esculentum Mill.) leaves under enhanced UV-B radiation. Journal of Integrative Plant Biology, 48, 1190-1196.

Asseng S, Guarin J, Raman M, Monje O, Kiss G, Despommier D, Meggers F, Gauthier P. 2020. Wheat yield potential in controlled-environment vertical farms. Proceedings of the National Academy of Sciences of the United States of America, 117, 19131-19135.

Beacham A M, Vickers L H, Monaghan J M. 2019. Vertical farming: A summary of approaches to growing skywards. The Journal of Horticultural Science & Biotechnology, 94, 277-283.

Bohne G, Richter E, Woehlecke H, Ehwaldi R. 2003. Diffusion barriers of tripartite sporopollenin microcapsules prepared from pine pollen. Annals of Botany, 92, 289-297.

Cerdan P D, Chory J. 2003. Regulation of flowering time by light quality. Nature, 423, 881-885.

Chen L, Cheung L S, Feng L, Tanner W, Frommer W B. 2015. Transport of sugars. Annual Review of Biochemistry, 84, 865-894.

Chen X, Liu S, Liu Q, Chen B, Feng L, Liu J. 2013. Effects of different light qualities on growth and photosynthetic characteristics of pakchoi. Northern Horticulture, 22, 1-4. (in Chinese)

Deng W, Clausen J, Boden S, Oliver S N, Casao M C, Ford B, Anderssen R S, Trevaskis B. 2015. Dawn and dusk set states of the circadian oscillator in sprouting barley (Hordeum vulgare) seedlings. PLoS ONE, 10, e129781.

Ding X, Hou X, Xie K, Xiong L. 2009. Genome-wide identification of burp domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta, 230, 149-163.

Dobritsa A, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller B, Preuss D. 2009. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiology, 151, 574-589.

Ferrante A, Savin R, Slafer G. 2020. Floret development and spike fertility in wheat differences between cultivars of contrasting yield potential and their sensitivity to photoperiod and soil N. Field Crops Research, 256, 107908.

Gao Y, Zhang M, Wang Z, Zhang Y. 2022. Yield sustainability of winter wheat under three limited-irrigation schemes based on a 28-year field experiment. Crop Journal, 10, 1774-1783.

Gauley A, Boden S. 2019. Genetic pathways controlling inflorescence architecture and development in wheat and barley. Journal of Integrative Plant Biology, 61, 296-309.

Goins G D, Yorio N C, Sanwo M M, Brown C S. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 48, 1407-1413.

González F, Slafer G, Miralles D. 2005. Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica, 146, 253-269.

Grienenberger E, Kim S K, Lallemand B, Geoffroy P, Heintz D, Souza C, Heitz T, Douglas C, Legrand M. 2010. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell, 22, 4067-4083.

Guo X, Xue X, Chen L, Li J, Wang Z, Zhang Y. 2022. Effects of LEDs light spectra on the growth, yield, and quality of winter wheat (Triticum aestivum L.) cultured in plant factory. Journal of Plant Growth Regulation, 42, 2530-2544.

Guo X, Zhang Z, Li J, Zhang S, Sun W, Xiao X, Sun Z, Xue X, Wang Z, Zhang Y. 2024. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. Plant Cell and Environment, 47, 1575-1591.

He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. 2024. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. Functional Plant Biology, 51, FP23091.

Hoagland D R, Arnon D I. 1950. The water-culture method for growing plants without soil. Circular & California Agricultural Experiment Station, 347, 1-32.

Hu N, Du C, Zhang W, Liu Y, Zhang Y, Zhao Z, Wang Z. 2022. Did wheat breeding simultaneously improve grain yield and quality of wheat cultivars releasing over the past 20 years in china. Agronomy-Basel, 12, 2109.

Huai J, Gao N, Yao Y, Du Y, Guo Q, Lin R. 2024. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. Plant Physiology, 195, 2274-2288.

Imaizumi T, Kay S. 2006. Photoperiodic control of flowering: Not only by coincidence. Trends in Plant Science, 11, 550-558. 

Ishida K, Yokoyama R. 2022. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. Journal of Plant Research, 135, 145-156.

Ji X, Shiran B, Wan J, Lewis D, Jenkins C, Condon A, Richards R, Dolferus R. 2010. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell and Environment, 33, 926-942.

Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. 2008. The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 67, 547-566.

Kaewthai N, Gendre D, Eklöf J, Ibatullin F, Ezcurra I, Bhalerao R, Brumer H. 2013. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant Physiology, 161, 440-454.

Kim D, Landmead B, Salzberg S. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 121-357.

Kim S, Grienenberger E, Lallemand B, Colpitts C, Kim S, Souza C, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh D, Legrand M, Douglas C. 2010. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell, 22, 4045-4066.

Li B, Meng X, Shan L, He P. 2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host & Microbe, 19, 641-650.

Li Y, Chen X, Chen Z, Cai R, Zhang H, Xiang Y. 2016. Identification and expression analysis of BURP domain-containing genes in Medicago truncatula. Frontiers in Plant Science, 7, 485.

Liscum E, Reed J W. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology, 49, 387-400.

Liu R, Shu B, Wang Y, Yu B, Wang Y, Gan Y, Liang Y, Qiu Z, Yang J, Yan S, Cao B. 2023. Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress. Environmental and Experimental Botany, 211, 105369.

Mizuuchi Y, Shimokawa Y, Wanibuchi K, Noguchi H, Abe I, Aschool O P S U, Bpresto J S A T. 2008. Structure function analysis of novel type III polyketide synthases from Arabidopsis thaliana. Biological & Pharmaceutical Bulletin, 31, 2205-2210.

Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach S, Szalai G, Pál M, Toldi D, Simon-Sarkadi L, Harnos N, Galiba G, Darko É. 2018. LED lighting-modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Frontiers in Plant Science, 9, 605.

Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254-257.

Nakaminami K, Sawada Y, Suzuki M, Kenmoku H, Kawaide H, Mitsuhashi W, Sassa T, Inoue Y, Kamiya Y, Toyomasu T. 2003. Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Bioscience Biotechnology and Biochemistry, 67, 1551-1558.

Orsini F, Pennisi G, Zulfiqar F, Gianquinto G. 2020. Sustainable use of resources in plant factories with artificial lighting (PFALs). European Journal of Horticultural Science, 85, 297-309.

O'Sullivan C A, Bonnett G D, McIntyre C L, Hochman Z, Wasson A P. 2019. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133-144.

Prieto P, Ochagavía H, Savin R, Griffiths S, Slafer G. 2018. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. Journal of Experimental Botany, 69, 2633-2645.

Ramadoss N, Gupta D, Vaidya B, Joshee N, Basu C. 2018. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance. Biochemical and Biophysical Research Communications, 503, 365-370.

Roser M, Ritchie H, Ortiz-Ospina E. 2013. World population growth. [2022-12-14]. https://ourworldindata.org/world-population-growth

Sakuma S, Schnurbusch T. 2020. Of floral fortune: Tinkering with the grain yield potential of cereal crops. New Phytologist, 225, 1873-1882.

Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504.

Shen Y, Guo S. 2014. Effects of photoperiod on wheat growth, development and yield in CELSS. Acta Astronautica, 105, 24-29.

Shockey J, Fulda M, Browse J. 2003. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases. Plant Physiology, 132, 1065-1076.

Siddikee M, Chauhan P, Sa T. 2012. Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Journal of Plant Growth Regulation, 31, 265-272.

Singh P, Pandey S, Dubey B, Raj R, Barnawal D, Chandran A, Rahman L. 2021. Salt and drought stress tolerance with increased biomass in transgenic Pelargonium graveolens through heterologous expression of ACC deaminase gene from Achromobacter xylosoxidans. Plant Cell Tissue and Organ Culture, 147, 297-311.

Slafer G, Savin R, Sadras V. 2023. Wheat yield is not causally related to the duration of the growing season. European Journal of Agronomy, 148, 126885.

Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N, Morris J, Bork P, Jensen L, Mering C. 2019. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47, D607-D613.

Tripathi S, Hoang Q, Han Y, Kim J. 2019. Regulation of photomorphogenic development by plant phytochromes. International Journal of Molecular Sciences, 20, 6165.

Ugarte C, Trupkin S, Ghiglione H, Slafe G, Casal J. 2010. Low red/far-red ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 61, 3151-3162.

Wang J, Song L, Gong X, Xu J, Li M. 2020. Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, 21, 1446.

Wang N, Li X, Zhu J, Yang Z. 2025. Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. Molecular Plant, 18, 26-41

Watson A, Ghosh S, Williams M, Cuddy W, Simmonds J, Rey M, Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N, Breakspear A, Korolev A, Rayner T, Dixon L, Riaz A, Martin W, Ryan M, Edwards D, Batley J, et al. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4, 23-29.

Wu G, Zhen R, Li X. 2014. Effect of different LED sources on the quality and yield of overwintering pepper in the greenhouse. Journal of Zhejiang A & F University, 31, 246-253. (in Chinese)

Xu X, Zhang M, Li J, Liu Z, Zhan Z, Zhang Y, Zhou S, Wang Z. 2018. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research, 221, 219-227.

Yang L, Fang J, Wang J, Hui S, Zhou L, Xu B, Chen Y, Zhang Y, Lai C, Jiao G, Sheng Z, Wei X, Shao G, Xie L, Wang L, Chen Y, Zhao F, Hu S, Hu P, Tang S. 2023. Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice (Oryza sativa L.) under cadmium stress. Frontiers in Plant Science, 14, 1222288.

Zhang Q, Chen K, Zhao Y. 2018. Effects of different LED light sources on photosynthetic characteristics, physiological quality and protective enzyme system of watermelon seedlings. Journal of Shanxi Agricultural Sciences, 46, 1615-1617. (in Chinese)

Zhu Y, Chu J, Dai X, He M. 2019. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. European Journal of Agronomy, 104, 49-62.

No related articles found!
No Suggested Reading articles found!