Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing plant morphology to enhance canopy light distribution improves lodging resistance and grain yield in densely planted maize

Jiyu Zhao*, Wenjie Geng*, Yuqi Xue*, Sher Alam, Peng Liu, Bin Zhao, Baizhao Ren, Jiwang Zhang#

College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

 Highlights 

1. Optimizing plant types can enhance light distribution and increase grain yield under dense planting.

2. Dense planting increased lodging risk by affecting the composition of DM and anatomical structure

3. DH605 showed increased lodging resistance and grain yield with improved light distribution.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在现代农业中,通过智慧株型提高玉米产量的机制是研究的重点。然而,关于密植玉米产量稳定性的问题,尤其是抗倒伏能力方面的研究相对不足。为此,我们开展了为期三年的大田试验,选取了三个玉米品种(XD20DH618DH605并设置三个种植密度处理(6.0×107.5×109.0×10 hm-2),旨在探究不同种植密度对不同植株形态的夏玉米品种抗倒伏能力和产量的影响。研究结果表明,随着种植密度的增加,DH605的产量显著提升,而XD20DH618的产量则呈现出先上升后趋于稳定的变化趋势。与低密度处理相比,高密度处理下夏玉米的株高和重心高度显著增加,同时底部和穗位层的透光率显著降低,基部节间的机械强度下降,倒伏风险增加,尤其是XD20DH605通过改善穗位层和底层的光照分布以及优化基部节间特性,提高了机械强度。最终,DH605-H的籽粒产量XD20-H处理显著增加了10.68%-34.11%,同时倒伏率降低了72.66%-92.29%。基部节间纤维素含量和外层维管束总面积是抗倒伏的关键因素,解释了机械强度变异的61.70%因此增加种植密度虽能显著提高玉米产量,但也会增加倒伏的风险;优化植株形态能够改善群体光照分布、基部节间的干物质组成和解剖结构,从而提高密植玉米的抗倒伏能力和籽粒产量。



Abstract  

Research on the yield-enhancing mechanisms of maize through ‘smart’ plant morphology under dense planting conditions is a critical focus in modern agriculture.  However, the issue of yield stability in dense-planted maize, particularly regarding lodging resistance, remains insufficiently examined in the academic literature.  A three-year field experiment was conducted using three hybrids (XD20, DH618 and DH605) and three plant density treatments (6.0×104, 7.5×104, and 9.0×104 plants ha-1) to investigate the effects of planting density on lodging resistance and yield of summer maize hybrids with different plant morphologies.  According to the results, increasing planting density significantly boosted the yield of DH605, while the yields of XD20 and DH618 exhibited an initial increase followed by stabilization.  Compared to the low-density (L) treatment, the height parameters and center of gravity of summer maize under the high-density (H) treatment were significantly elevated.  This was accompanied by a pronounced reduction in light transmittance within the bottom and ear layers, a decrease in the mechanical strength of basal internodes, and an increased risk of lodging, particularly for the XD20 hybrid.  DH605 improved mechanical strength by enhancing the light distribution within the ear and bottom layers, and by optimizing basal internode characteristics.  Ultimately, the grain yield under the DH605-H treatment increased by 10.68 to 34.11% relative to XD20-H, with a concurrent reduction in lodging rates ranging from 72.66 to 92.29%.  Cellulose content within basal internodes and the total area of vascular bundles in the outer layer were key factors, explaining 61.70% of mechanical strength variance.  Therefore, high planting density significantly increased yield but also lodging susceptibility.  Optimizing plant morphology improved canopy light distribution, dry matter composition and anatomical structure of basal internodes, enhancing lodging resistance and grain yield in densely planted maize. 

Keywords:  maize       planting density       plant morphology       canopy light distribution       lodging resistance  
Received: 25 December 2024   Online: 21 March 2025  
Fund: 

This study was supported by Agricultural Biological Breeding Key Projects, China (2023ZD0402807), National Major Science and Technology Projects of Agricultural of China (FSNK202218080314), the National Natural Science Foundation of China (32172115), China Agriculture Research System of MOF and MARA (CARS-02-21). 

About author:  #Correspondence Jiwang Zhang, Tel: +86-0538-8241485, E-mail: jwzhang@sdau.edu.cn *indicates the authors who contributed equally to this study.

Cite this article: 

Jiyu Zhao, Wenjie Geng, Yuqi Xue, Sher Alam, Peng Liu, Bin Zhao, Baizhao Ren, Jiwang Zhang. 2025. Optimizing plant morphology to enhance canopy light distribution improves lodging resistance and grain yield in densely planted maize. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.012

Ahmad I, Ahmad S, Yang X N, Meng X P, Yang B P, Liu T, Han Q F. 2021. Effect of uniconazole and nitrogen levels on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology, 23, 485-496.

Ahmad I, Batyrbek M, Ikram K, Ahmad S, Kamran M, Misbah, Khan R S, Hou F J, Han Q F. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture, 22, 417-433.

Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X P, Su W N, Liu T, Han Q F. 2018. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 222, 66-77.

Ariyanayagam R P, Moore C L, Carangal V R. 1974. Selection for leaf angle in maize and its effect on grain yield and other characters. Crop Science, 14, 551-556.

Cazetta J O, Revoredo M D. 2018. Non-structural carbohydrate metabolism, growth, and productivity of maize by increasing plant density. Agronomy, 8, 243.

Dong R, Miao Y X, Berry P, Wang X B, Yuan F, Kusnierek K, Baker C, Sterling M. 2023. In-season prediction of maize stem lodging risk using an active canopy sensor. European Journal of Agronomy, 151, 126956.

Guo Y, Hu Y M, Chen H, Yan P S, Du Q G, Wang Y F, Wang H Q, Wang Z H, Kang D M, Li W X. 2021. Identification of traits and genes associated with lodging resistance in maize. Crop Journal, 9, 1408-1417.

Hu Y, Javed H H, Asghar M A, Peng X, Brestic M, Skalický M, Ghafoor A Z, Cheema H N, Zhang F F, Wu Y C. 2022. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Frontiers in Plant Science, 13, 807048.

Hu Y B, Qin F, Wu Z, Wang X Q, Ren X L. Jia Z K, Wang Z L, Chen X G, Cai T. 2024. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment. Journal of Integrative Agriculture, 23, 2211-2226.

Hussain S, Ting L, Nasir I, Brestic M, Ting P, Mumtaz M, Shafiq I, Li S X, Wang L, Gao Y, Khan A, Ahmad I, Allakhverdiev S I, Liu W G, Yang W Y. 2020. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochemical Photobiological Sciences, 19, 462-472.

Jin R, Li Z, Wang X L, Liu F, Kong F L, Liu Q L, Lan T Q, Feng D J, Yuan J C. 2023. Optimizing row spacing increases stalk lodging resistance by improving light distribution in dense maize populations. Agronomy, 13, 462.

Kamran M, Ahmad I, Wang H Q, Wu X R, Xu J, Liu T N, Ding R X, Han Q F. 2018. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Research, 224, 148-159.

Kunduru B, Kumar R, Brar M S, Stubbs C J, Tabaracci K, Bokros N T, Bridges W C, Cook D D, DeBolt S, McMahan C S, Robertson D J, Sekhon R S. 2023. Unveiling the phenotypic landscape of stalk lodging resistance in diverse maize hybrids. Field Crops Research, 304, 109168.

Li C Z, Li C J. 2021. Ridge-furrow with plastic film mulching system decreases the lodging risk for summer maize plants under different nitrogen fertilization rates and varieties in dry semi-humid areas. Field Crops Research, 263, 108056.

Li F C, Xie G S, Huang J F, Zhang R, Li Y, Zhang M M, Wang Y T, Li A, Li X K, Xia T. 2017. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal, 15, 1093-1104.

Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. 2021. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security, 10, e312.

Liu F, Zhou F, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. 2023. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. European Journal of Agronomy, 148, 126871.

Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, Hou P, Li S K. 2022. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security, 11, e375.

Liu S J, Pubu C J, Li Y Q, Zhang Y R, Yang S S, Zhu Y Z, Chen L J, Zhang G X, Han J. 2024. Optimal N fertilizer management method for improving maize lodging resistance and yields by combining controlled-release urea and normal urea. European Journal of Agronomy, 156, 127159.

Liu X M, Gu W R, Li C F, Li J, Wei S. 2021. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics grain filling and yield formation under high planting density in Heilongjiang Province China. Journal of Integrative Agriculture, 20, 511-526.

Mantilla-Perez M B, Maria S F. 2017. Differential manipulation of leaf angle throughout the canopy: Current status and prospects. Journal of Experimental Botany68, 5699-5717.

Ort D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Croce R, Hanson M R, Hibberd J M, Long S P. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 112, 8529-8536.

Piñera-Chavez F J, Berry P M, Foulkes M J, Molero G, Reynolds M P. 2016. Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crops Research, 196, 64-74.

Qian R, Guo R, Guo G X, Ren X L, Chen X L, Jia Z K. 2024. Impact of straw and its derivatives on lodging resistance and yield of maize (Zea mays L.) under rainfed areas. European Journal of Agronomy, 153, 127055.

Raza M A, Bin Khalid M H, Zhang X, Feng L Y, Khan I, Hassan M J, Ahmed M, Ansar M, Chen Y K, Fan Y F, Yang F, Yang W Y. 2019. Effect of planting patterns on yield nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 9, 4947.

Robertson D J, Brenton Z W, Kresovich S, Cook D D. 2022. Maize lodging resistance: Stalk architecture is a stronger predictor of stalk bending strength than chemical composition. Biosystems Engineering, 219, 124-134.

Robertson D J, Julias M, Lee S Y, Cook D D. 2017. Maize stalk lodging: Morphological determinants of stalk strength. Crop Science, 57, 926-934.

Sekhon R S, Joyner C N, Ackerman A J, McMahan C S, Cook D D, Robertson D J. 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research, 249, 107737.

Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z W, Sun W W, Song Y L. 2021. Combating dual challenges in maize under high planting density: Stem lodging and kernel abortion. Frontiers in Plant Science, 12, 699085.

Shao J Y, Liu P, Zhao B, Zhang J W, Zhao X Y, Ren B Z. 2023. Combined effects of high temperature and waterlogging on yield and stem development of summer maize. Crop Journal, 11, 651-660.

Sher A, Khan A, Ashraf U, Liu H H, Li J C. 2018. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk. Frontiers in Plant Science, 9, 1047.

Shi Q B, Xia Y, Wang Q B, Lv K W, Yang H J, Cui L Z, Sun Y, Wang X F, Tao Q, Song X H, Xu D, Xu W C, Wang X Y, Wang X L, Kong F Y, Zhang H S, Li B S, Li P H, Wang H Y, Li G. 2024. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. Molecular Plant, 17, 1255-1271.

Stubbs C J, Kunduru B, Bokros N, Verges V, Porter J, Cook D D, DeBolt S, McMahan C, Sekhon R S, Robertson D J. 2023. Moving toward short stature maize: The effect of plant height on maize stalk lodging resistance. Field Crops Research, 300, 109008.

Stubbs C J, Larson R, Cook D D. 2022. Maize stalk stiffness and strength are primarily determined by morphological factors. Scientific Reports, 14, 720.

Tian J G, Wang C L, Chen F Y, Qin W C, Yang H, Zhao S H, Xia J L, Du X, Zhu Y F, Wu L S, Cao Y, Li H, Zhuang J H, Chen S J, Zhang H Y, Chen Q Y, Zhang M C, Deng X W, Deng D Z, Li J G, et al. 2024. Maize smart-canopy architecture enhances yield at high densities. Nature, 632, 1-9.

Tian J G, Wang C L, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F, Xia J L, Wu L S, Xu G H. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365, 658-664.

Tian P Y, Liu J M, Zhao Y N, Huang Y F, Lian Y H, Wang Y, Ye Y L. 2022. Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize. Frontiers in Plant Science, 13, 974714.

Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q Q, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, Li Y, et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 52, 565-571.

Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. 2015. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 180, 46-53.

Wang T Y, Wang R H, Wang X Q, Zhang R Y, Xu R B, Jiao Y Y, Sun X, Wang J D, Song W, Zhao J R. 2023. Research in maize dwarf genes and dwarf breeding. Biotechnology Bulletin, 39, 43-51.

Wu W, Shah F, Ma B L. 2022. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment, 1, 133-144.

Xu C Gao Y Tian B Ren J Meng Q F Wang P. 2017. Effects of EDAH a novel plant growth regulator on mechanical strength stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71-79.

Xu Z, Lai T Z, Li S, Si D X, Zhang C C, Cui Z L, Chen X P. 2018. Promoting potassium allocation to stalk enhances stalk bending resistance of maize (Zea mays L.). Field Crops Research, 215, 200-206.

Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. 2020. Traits of plant morphology stalk mechanical strength and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 117, 126073.

Xue J, Gou L, Shi Z G, Zhao Y S, Zhang W F. 2017a. Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. Journal of Integrative Agriculture, 16, 85-96.

Xue J, Gou L, Zhao Y S, Yao M N, Yao H S, Tian J S, Zhang W F. 2016a. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133-141.

Xue J, Qi B Q, Ma B Y, Li B X, Gou L. 2021. Effect of altered leaf angle on maize stalk lodging resistance. Crop Science, 61, 689-703.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017b. Research progress on reduced lodging of high-yield and-density maize. Journal of Integrative Agriculture, 16, 2717-2725.

Xue J, Zhao Y S, Gou L, Shi Z G, Yao M N, Zhang W F. 2016b. How high plant density of maize affects basal internode development and strength formation. Crop Science, 56, 3295-3306.

Yang Y S, Guo X X, Hou P, Xue J, Liu G Z, Liu W M, Wang Y Y, Zhao R L, Ming B, Xie R Z, Wang K R, Li S K. 2020. Quantitative effects of solar radiation on maize lodging resistance mechanical properties. Field Crops Research, 255, 107906.

Yan Y Y, Duan F Y, Li X, Zhao R L, Hou P, Zhao M, Li S K, Wang Y H, Dai T B, Zhou W B. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, kiae204.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2022. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. European Journal of Agronomy, 137, 126520.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu Y Q, Xu J Z, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J C. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 286, 108611.

Zhang P, Yan Y, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. 2022. Lodging resistance in maize: A function of root-shoot interactions. European Journal of Agronomy, 132, 126393.

Zhang Y, Du J J, Wang J L, Ma L M, Lu X J, Pan X D, Guo X Y, Zhao C J. 2018. High-throughput micro-phenotyping measurements applied to assess stalk lodging in maize (Zea mays L.). Biological Research, 51, 40.

Zhao B, Wang B, Li Z, Guo T, Zhao J, Guan Z, Liu K. 2019. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. Theoretical and Applied Genetics, 132, 1435-1449. 

No related articles found!
No Suggested Reading articles found!