Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Comparing simulated and observed cotton transpiration in relations to climate factors

Zeshan Zhang1, Pengzhong Zhang5#, Yongfan Chen1, Xuejiao Wang2, Mingfeng Yang3, Shuai Sun4, Yutong Zhang1, Sen Wang2, Fen Ji3, Chunrong Ji2, Dao Xiang3, Parhat Mamat5, Lizhen Zhang1, 5# 

1 Agricultural Meteorology Department, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

2 Xinjiang Agrometeorological Observatory, Urumqi 830002, China

3 Wulanwusu Agrometeorological Station, Shihezi 832199, China

4 Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

5 China National Cotton R&D Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China 

 Highlights 

l The estimated transpiration of AquaCrop model was slightly higher than that of sap flow measurements.

l The model could capture the trends of transpiration with climate factors, but respond stronger than sap flow.

l The overestimation of daily transpiration was due to the overweight of canopy cover and crop coefficient.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

驱动作物模拟模型通常用于评估作物产量和灌溉管理策略,以提高农业用水效率。经过充分测试的模型可以作为指导农业实践的有力工具。本研究的目的是评估 AquaCrop 模型模拟滴灌条件下棉花蒸腾和水分利用的能力,并与田间茎流测量结果进行比较。在中国新疆进行了一项为期两年的棉花田间试验(2020-2021),包括两种行距和两种打顶方法。该模型充分估计了冠层覆盖率,归一化均方根误差 (nRMSE) 小于 5%,模型效率 (EF) 接近 1。模型对蒸腾的估算与所有年份和处理的茎流测量值(nRMSE=22.4%有良好的一致性。模型模拟的棉花水分利用效率(4.42 g m-2 mm-1)低于实际测量值(4.79 g m-2 mm-1)。在滴灌和地膜覆盖条件下,棉花在短而密的冠层结构中生长时,模型对作物系数的估计值有11.5%的高估,导致估算的蒸腾量略高于用茎流计测量的值。空气温度、水汽压差和辐射对棉花蒸腾有正面影响,而湿度负面影响。该模型可以捕捉蒸腾量随气候因素变化的趋势,但气候效应强于茎流的影响。总之,AquaCrop模型是优化棉花灌溉策略的有效工具。



Abstract  

Water-driven crop simulation models are commonly employed to evaluate crop yields and irrigation management strategies to improve agricultural water productivity.  Well-tested models can serve as powerful tools for guiding agricultural practices.  The objective of this study was to assess the capability of the AquaCrop model for simulation of cotton transpiration and water use under drip irrigation conditions comparing with field sap flow measurements.  A two-year field experiment (2020-2021) in cotton was conducted in Xinjiang China including two row spacing and two topping methods.  The model adequately estimated canopy cover with a normalized root mean square error (nRMSE) of less than 5% and a model efficiency (EF) close to 1.  The model estimation of transpiration obtained a good agreement with sap flow measurements (nRMSE=22.4%) across all years and treatments.  The model simulated water use efficiency (WUE, 4.42 g m-2 mm-1) of cotton were lower than those calculated from actual measurements with WUE of 4.79 g m-2 mm-1.  The estimated transpiration was slightly higher than that measured using sap flow meter due to an 11.5% of overestimation for crop coefficient in the model when cotton grew in short and dense canopy structure under drip irrigation and plastic film cover conditions.  Air temperature, vapor pressure difference and radiation had positive effects on cotton transpiration while humidity had negative effects.  The model could capture the trends of transpiration with climate factors, but the climatic effects were stronger than that of sap flow.  In conclusion, AquaCrop model is useful tool in optimizing cotton irrigation strategies.

Keywords:  AquaCrop       machine-harvested cotton                    sap velocity              chemical topping              row spacing              evapotranspiration  
Received: 30 October 2024   Online: 20 February 2025  
Fund: 

This research was supported by the Key Research and Development Program of Xinjiang (2022B02001), the Xinjiang Science and Technology Major Project (2023A02003-5), Xinjiang Tianshan Talent Training Program (2023TSYCTD004), the National Natural Science Foundation of China (42105172), and Xinjiang Production and Construction Corps Key Areas Science and Technology Research Program (2020AB017).

About author:  Zeshan Zhang, Email: zhangzeshan@cau.edu.cn; #Correspondence Lizhen Zhang, E-mail: zhanglizhen@cau.edu.cn; Pengzhong Zhang, E-mail: zhangpz@163.com

Cite this article: 

Zeshan Zhang, Pengzhong Zhang, Yongfan Chen, Xuejiao Wang, Mingfeng Yang, Shuai Sun, Yutong Zhang, Sen Wang, Fen Ji, Chunrong Ji, Dao Xiang, Parhat Mamat, Lizhen Zhang. 2025. Comparing simulated and observed cotton transpiration in relations to climate factors. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.041

Ahmadi S H, Ghorra M R R, Sepaskhah A R. 2022. Parameterizing the AquaCrop model for potato growth modeling in a semi-arid region. Field Crops Research, 288, 108680.

Akhtar F, Tischbein B, Awan U K. 2013. Optimizing deficit irrigation scheduling under shallow groundwater conditions in lower reaches of Amu Darya River Basin. Water Resources Management, 27, 3165-3178.

Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati ME, Barati M A, Rahnama A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100, 1-8.

Battude M, Al Bitar A, Morin D, Cros J, Huc M, Sicre C M, Le Dantec V, Demarez V. 2016. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment, 184, 668-681.

Bleby T M, Burgess S S O, Adams M A. 2004. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Functional Plant Biology, 31, 645-658.

Broughton K J, Conaty W C. 2022. Understanding and exploiting transpiration response to vapor pressure deficit for water limited environments. Frontiers in Plant Science, 13, 893994.

Burgess S S, Adams M A, Turner N C, Beverly C R, Ong C K, Khan A A, Bleby T M. 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 589-598.

Cai G, Vanderborght J, Langensiepen M, Schnepf A, Hüging H, Vereecken H. 2018. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions. Hydrology and Earth System Sciences22, 2449-2470.

Capurro M C, Ham J M, Kluitenberg G J, Comas L, Andales A A. 2024. A novel sap flow system to measure maize transpiration using a heat pulse method. Agricultural Water Management301, 108963.

Chen Y, Evers J B, Yang M, Wang X, Zhang Z, Sun S, Zhang Y, Wang S, Ji F, Xiang D, Li J, Ji C, Zhang L. 2024. Cotton crop transpiration reveals opportunities to reduce yield loss when applying defoliants for efficient mechanical harvesting. Field Crops Research309, 109304.

Chen Y, Zhang Z, Wang X, Sun S, Zhang Y, Wang S, Yang M, Ji F, Ji C, Xiang D, Zha T, Zhang L. 2022. Sap velocity, transpiration and water use efficiency of drip-irrigated cotton in response to chemical topping and row spacing. Agricultural Water Management, 267, 107611.

Chibarabada T P, Modi A T, Mabhaudhi T. 2020. Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agricultural and Forest Meteorology, 281, 107850.

Clearwater M J, Luo Z, Mazzeo M, Dichio B. 2009. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small‐diameter stems. Plant, Cell & Environment, 32, 1652-1663.

Dai J, Tian L, Zhang Y, Zhang D, Xu S, Cui Z, Li W, Zhan L, Li C, Dong H. 2022. Plant topping effects on growth, yield, and earliness of field-grown cotton as mediated by plant density and ecological conditions. Field Crops Research275, 108337.

Ellison D, Futter M N, Bishop K. 2012. On the forest cover-water yield debate: From demand- to supply-side thinking. Global Change Biology, 18, 806-820.

Farahani H J, Izzi G, Oweis T Y. 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 101, 469-476.

Feike T, Henseler M. 2017. Multiple policy instruments for sustainable water management in crop production-A modeling study for the Chinese Aksu-Tarim Region. Ecological Economics, 135, 42-54.

Feng L, Wan S, Zhang Y, Dong H. 2024. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Research, 312, 109401

Fuchs S, Leuschner C, Link R, Coners H, Schuldt B. 2017. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology, 244, 151-161.

Gao F, Wang L, Xie Y, Sun J, Ning H, Han Q, Kanneh J E, Liu H. 2024. Optimizing canopy structure through equal row spacing and appropriate irrigation enhances machine-harvested seed cotton yield and quality. Industrial Crops and Products, 216, 118799.

Gao Y, Duan A, Qiu X, Li X, Pauline U, Sun J, Wang H. 2013. Modeling evapotranspiration in maize/soybean strip intercropping system with the evaporation and radiation interception by neighboring species model. Agricultural Water Management128, 110-119.

Grossiord C, Buckley T N, Cernusak L A, Novick K A, Poulter B, Siegwolf R T, Sperry J S, McDowell N G. 2020. Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550-1566.

Guo Y, Shen Y. 2016. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. Journal of Hydrology, 540, 257-273.

Gu S, Sun S, Wang X, Wang S, Yang M, Li J, Maimaiti P, van der Werf W, Evers J B, Zhang L. 2024. Optimizing radiation capture in machine-harvested cotton: A functional-structural plant modelling approach to chemical vs. manual topping strategies. Field Crops Research, 317, 109553.

Han S, Yang Y, Li H, Yang Y, Wang J, Cao J. 2019. Determination of crop water use and coefficient in drip-irrigated cotton fields in arid regions. Field Crops Research, 236, 85-95.

He Q, Li S, Hu D, Wang Y, Cong X. 2021. Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrigation Science, 39, 277-292.

Huang J, Tian L, Liang S, Ma H, Becker-Reshef I, Huang Y, Su W, Zhang X, Zhu D, Wu W. 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106-121.

Li F, Yu D, Zhao Y. 2019. scheduling optimization for cotton based on the AquaCrop model. Water Resources Management, 33, 39-55.

Li N, Li Y, Yang Q, Biswas A, Dong H. 2024. Simulating climate change impacts on cotton using AquaCrop model in China. Agricultural Systems, 216, 103897.

Linker R, Ioslovich I. 2017. Assimilation of canopy cover and biomass measurements in the crop model AquaCrop. Biosystems Engineering, 162, 57-66.

Lu Y, Chibarabada T P, McCabe M F, De Lannoy G J, Sheffield J. 2021. Global sensitivity analysis of crop yield and transpiration from the FAO-AquaCrop model for dryland environments. Field Crops Research, 269, 108182.

Marshall D C. 1958. Measurement of sap flow in conifers by heat transport. Plant Physiology33, 385.

Masanganise J, Chipindu B, Mhizha T, Mashonjowa E. 2012. Model prediction of maize yield responses to climate change in north-eastern Zimbabwe. African Crop Science Journal, 20, 505-515.

Miner G L, Ham J M, Kluitenberg G J. 2017. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agricultural and Forest Meteorology246, 86-97.

Nie J, Li Z, Zhang Y, Zhang D, Xu S, He N, Zhan Z, Dai J, Li C, Li W, Dong H. 2021. Plant pruning affects photosynthesis and photoassimilate partitioning in relation to the yield formation of field-grown cotton. Industrial Crops and Products, 173, 114087.

Ning S, Shi J, Zuo Q, Wang S, Ben-Gal A. 2015. Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Research, 177, 125-136.

Pasley H, Brown H, Holzworth D, Whish J, Bell L, Huth N. 2023. How to build a crop model. A review. Agronomy for Sustainable Development, 43, 2.

Poyatos R, Granda V, Flo V, Adams M A, Adorján B, Aguadé D, Aidar M P, Allen S, Alvarado-Barrientos M S, Anderson-Teixeira K J, Aparecido L M. 2020. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth System Science Data Discussions, 2020, 1-57.

Poyatos R, Granda V, Molowny-Horas R, Mencuccini M, Steppe K, Martínez-Vilalta J. 2016. SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiology36, 1449-1455.

Raes D, Steduto P, Hsiao T C, Fereres E. 2009. AquaCropthe FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101, 438-447.

Rafi Z, Merlin O, Le Dantec V, Khabba S, Mordelet P, Er-Raki S, Amazirh A, Olivera-Guerra L, Ait Hssaine B, Simonneaux V, Ezzahar J, Ferrer F. 2019. Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter-and FAO-based methods. Agricultural and Forest Meteorology265, 310-326.

Rajan N, Maas S J, Kathilankal J C. 2010. Estimating crop water use of cotton in the texas high plains. Agronomy Journal, 102, 1641-1654.

Ran H, Kang S, Li F, Tong L, Ding R, Du T, Li S, Zhang X. 2017. Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China. Agricultural Systems, 151, 20-32.

Rotstayn L D, Roderick M L, Farquhar G D. 2006. A simple pan‐evaporation model for analysis of climate simulations: Evaluation over Australia. Geophysical Research Letters33, 17.

Sandhu R, Irmak S. 2019. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agricultural Water Management, 224, 105753.

Shapira O, Hochberg U, Joseph A, McAdam S, Azoulay‐Shemer T, Brodersen C R, Holbrook N M, Zait Y. 2024. Wind speed affects the rate and kinetics of stomatal conductance. The Plant Journal, 120, 1552-1562.

Steduto P, Hsiao T C, Raes D, Fereres E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101, 426-437.

Steppe K, De Pauw D J, Doody T M, Teskey R O. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150, 1046-1056.

De Swaef T, Hanssens J, Cornelis A, Steppe K. 2013. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Annals of Botany111, 271-282.

Tan M, Gou F, Stomph T J, Wang J, Yin W, Zhang L, Chai Q, van der Werf W. 2020. Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: Model development and application to wheat-maize intercropping. Field Crops Research246, 107613.

Tolk J A, Howell T A, Steiner J L, Krieg D R, Schneider A D. 1995. Role of transpiration suppression by evaporation of intercepted water in improving irrigation efficiency. Irrigation Science16, 89-95.

Toumi J, Er-Raki S, Ezzahar J, Khabba S, Jarlan L, Chehbouni A. 2016. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 163, 219-235.

Vanuytrecht E, Raes D, Steduto P, Hsiao T C, Heng L K, Vila M G, Moreno P M. 2014. AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software, 62, 351-360.

Wang T, Wang Z, Guo L, Zhang J, Li W, He H, Zong R, Wang D, Jia Z, Wen Y. 2021. Experiences and challenges of agricultural development in an artificial oasis: A review. Agricultural Systems, 193, 103220.

Weinzettel J, Pfister S. 2019. International trade of global scarce water use in agriculture: Modeling on watershed level with monthly resolution. Ecological Economics, 159, 301-311.

Wu F, Tang Q, Zhang L, Cui J, Tian L, Guo R, Wang L, Chen B, Zhang N, Ali S, Lin T, Jiang P. 2023. Reducing irrigation and increasing plant density enhance both light interception and light use efficiency in cotton under film drip irrigation. Agronomy13, 2248.

Yang Z, Jiang Y, Qiu R, Gong X, Agathokleous E, Hu W, Clothier B. 2023. Heat stress decreased transpiration but increased evapotranspiration in gerbera. Frontiers in Plant Science14, 1119076.

Yu L, Zhao X, Gao X, Jia R, Yang M, Yang X, Wu Y, Siddique K H M. 2021. Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. Journal of Hydrology, 594, 125977.

Zhang L, Van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz J H J. 2008. Light interception and utilization in relay strip intercrops of wheat and cotton. Field Crops Research, 107, 29–42.

Zuo W, Wu B, Wang Y, Xu S, Chen M, Liang F, Tian J, Zhang W. 2024. Optimal row spacing configuration to improve cotton yield or quality is regulated by plant density and irrigation rate. Field Crops Research, 305, 109187

No related articles found!
No Suggested Reading articles found!