Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Plant growth retardant increases nitrogen utilization efficiency and harvest index in maize by optimizing Plant Horizontal-Vertical Ratio and vascular bundles morphology

Qian Tang1, 2*, Jianhong Ren1*, Xinru Zhang1, Cai Wu1, Yarong Zhang1, Dahong Bian1, Guangzhou Liu1, Yanhong Cui1, Xiong Du1, Chuang Wang2#, Zhen Gao1#

1 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Water-Saving Agriculture in North China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding 071001, China

2 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430000, China

 Highlights 

1. Plant growth retardant (EC) improves nitrogen utilization efficiency and harvest index.

2. The dry matter deetrmined maize nitrogen uptake.

3. EC and high-density planting can synergistically improve nitrogen use efficiency in maize.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

提高氮肥利用效率不仅有助于增加玉米产量,还能减轻因氮肥过量使用而对环境造成的负面影响。大量研究已经明确植物生长调节剂和种植密度对玉米抗倒伏能力和氮吸收利用的影响,但关于植物生长调节剂与种植密度互作对氮肥利用效率的影响却鲜有报道。本试验于2020-2021开展,设置4个种植密度:4.56.07.59.0·m⁻²,并在玉米7展叶3EC(乙烯利和矮壮素复合剂)喷施剂量:0CK)、450900 mL·ha⁻¹CK相比,EC处理(尤其是900mL ha⁻¹剂量)显著降低了玉米株高生物量,同时增加了茎粗、植株横纵比(PHVR,我们将其定义为玉米地上部第一节茎粗与株高的比值)以及维管束的数量和面积。PHVR和维管束形态与单株干物质转运量及其对籽粒的贡献呈显著正相关。尽管EC处理降低了玉米的生物量,但促进了干物质再分配进而提高了收获指数(HI)。EC处理下,干物质积累量降低导致玉米吸收效率降低,同时PHVR和维管束数量、面积的增加则有助于加速玉米植株中素向籽粒转运在不同密度下玉米利用效率(NUtECK显著提高了4.3% - 31.1%。增加种植密度则可以同步提高玉米氮肥吸收效率和利用效率。因此,在高密度下施用高剂量的EC不仅可以显著增强玉米抗倒伏能力,还可以通过促进干物质和氮转运显著提高玉米NUtEHI



Abstract  

Improving nitrogen utilization efficiency is not only beneficial for increasing maize yield, but can also mitigate the environmental impact of excessive nitrogen fertilizer use. Numerous studies have evaluated the impact of plant growth retardants and plant density on plant lodging resistance and nitrogen uptake.  However, the influence of plant growth retardants on nitrogen utilization efficiency under varying plant densities has been rarely reported.  A field experiment was conducted in 2020-2021, which involved spraying EC (an ethephon and cycocel compound) at the 7th-leaf stage of maize with dosages of 0 (CK), 450, and 900 mL ha−1 at plant densities of 4.5, 6.0, 7.5, and 9.0 plants m−2. Compared to CK, application of EC (especially high dosage) significantly decreased plant height and dry matter, while increased stem diameter, plant horizontal-vertical ratio (PHVR, a new index, which we defined as the ratio of stem diameter of the basal first internode above ground to the plant height), and the number and area of vascular bundle. PHVR and vascular bundle morphology had significantly positive correlation with individual plant dry matter remobilization amount and its contribution to grain yield.  Therefore, despite reduced dry matter weight was observed in EC treatment, the increased dry matter remobilization enhanced harvest index (HI). However, nitrogen uptake efficiency was not improved with the enhancement of PHVR and vascular bundle morphology, due to a decrease in dry matter accumulation. Inversely, improved PHVR and vascular bundle were beneficial to accelerate nitrogen translocation, thus increasing nitrogen utilization efficiency (NUtE) significantly by 4.3–31.1% compared with CK across densities. Increasing density simultaneously improve nitrogen uptake and utilization efficiency. Consequently, high dosage of EC application under high density not only could significantly enhance lodging resistance, but also improving NUtE and HI significantly through promoting the transport of dry matter and nitrogen. 

Keywords:  maize       vascular bundle              dry matter remobilization              nitrogen use efficiency              harvest index  
Received: 13 September 2024   Online: 20 February 2025  
Fund: 

This work was supported by National Key R&D Program of China (2023YFD2301500).

About author:  Qian Tang, E-mail: tangqian1998n@163.com; Jianhong Ren, E-mail: ndrenjianhong@163.com; #Correspondence Chuan Wang, E-mail: chuang.wang@mail.hzau.edu.cn; Zhen Gao, E-mail: gaozhenvision@163.com. * These authors contributed equally to this paper.

Cite this article: 

Qian Tang, Jianhong Ren, Xinru Zhang, Cai Wu, Yarong Zhang, Dahong Bian, Guangzhou Liu, Yanhong Cui, Xiong Du, Chuang Wang, Zhen Gao. 2025. Plant growth retardant increases nitrogen utilization efficiency and harvest index in maize by optimizing Plant Horizontal-Vertical Ratio and vascular bundles morphology. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.037

Ahmad I, Ahmad S, Yang X N, Meng X P, Yang B P, Liu T, Han Q F. 2021. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology, 23, 485-496.

Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. 2014. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research, 155, 111-119.

Bloom A J. 2015. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynthesis Research, 123, 117-128.

Chen K R, Vyn T J. 2017. Post-silking factor consequences for N efficiency changes over 38 years of commercial maize hybrids. Frontiers in Plant Science, 8, 1737.

Chen X, Chen F, Chen Y, Gao Q, Yang X, Yuan L, Zhang F, Mi G. 2013. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 19, 923-936.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133, 48-67.

Ciampitti I A, Vyn T J. 2013. Grain nitrogen source changes over time in maize: A review. Crop Science, 53, 366-377.

Cui Z, Chen X, Zhang F. 2013. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 105, 1411-1416.

Deng J M, Zuo W Y, Wang Z Q, Fan Z X, Ji M F, Wang G X, Ran J Z, Zhao C M, Liu J Q, Niklas K J, Hammond S T, Brown J H, 2012. Insights into plant size-density relationships from models and agricultural crops. Proceedings of the National Academy of Sciences of the United States of America, 109, 8600-8605.

Gong L S, Qu S J, Huang G M, Guo Y L, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. Improving maize grain yield by formulating plant growth regulator strategies in North China. Journal of Integrative Agriculture, 20, 622–632.

Grassini P, Thorburn J, Burr C, Cassman K G. 2011. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120, 142-150.

He Q P, Dong S T, Gao R Q. 2005. Relationship between development of spike vascular bundle and sink capacity of ear and kernel in maize (Zea mays L.). Acta Agronomica Sinica, 31, 995-1000. (in Chinese)其他如有中文文献,请补充in Chinese

Hou P, Liu Y, Liu W, Liu G, Xie R, Wang K, Ming B, Wang Y, Zhao R, Zhang W. 2020. How to increase maize production without extra nitrogen input. Resources, Conservation and Recycling, 160, 104913.

Hütsch B W, Schubert S. 2021. Can nutrient-utilization efficiency be improved by reduced fertilizer supply to maize plants treated with the plant growth regulator paclobutrazol? Journal of Agronomy and Crop Science, 207, 884-900.

Hütsch B W, Schubert S. 2022. Grain yield, harvest index, water-use efficiency and nitrogen partitioning to grain can be improved by application of the plant growth regulator paclobutrazol to maize plants with reduced N supply. Journal of Agronomy and Crop Science, 209, 1-12.

Kamiji Y, Pang J, Milroy S P, Palta J A. 2014. Shoot biomass in wheat is the driver for nitrogen uptake under low nitrogen supply, but not under high nitrogen supply. Field Crops Research, 165, 92-98.

Lea P J, Azevedo R A. 2006. Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Annals of Applied Biology, 149, 243-247.

Lee E A, Tollenaar M. 2007. Physiological basis of successful breeding strategies for maize grain yield. Crop Science, 47, S202-S215.

Li G H, Cheng G G, Lu W P, Lu D L. 2021. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. Journal of Integrative Agriculture, 20, 554-564.

Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha-1. Resources Conservation and Recycling, 188, 106656.

Liu Z, Sha Y, Huang Y W, Hao Z H, Guo W Q, Ke L H, Chen F J, Yuan L X, Mi G H. 2022. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Research, 284, 108580.

 Liu Z, Zhu K, Dong S, Liu P, Zhao B, Zhang J. 2017. Effects of integrated agronomic practices management on root growth and development of summer maize. European Journal of Agronomy, 84, 140-151.

Ma D L, Xie R Z, Liu X, Niu X K, Hou P, Wang K R, Lu Y L, Li S K. 2014. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Science, 54, 2805-2814.

Raun W R, Johnson G V. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91, 357-363.

Saiz-Fernández I, De Diego N, Brzobohatý B, Muñoz-Rueda A, Lacuesta M. 2017. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiology and Biochemistry, 120, 213-222.

Shane M W, McCully M E, Canny M J. 2000. The vascular system of maize stems revisited: Implications for water transport and xylem safety. Annals of Botany, 86, 245-258.

Shao H, Wu X, Chi F, Zhu F, Liu J, Duan J, Shi W, Xu Y, Mi G. 2024. How does increasing planting density affect nitrogen use efficiency of maize: A global meta-analysis. Field Crops Research, 311, 109369.

Shi D Y, Li Y H, Zhang J W, Liu P, Zhao B, Dong S T. 2016. Effects of plant density and nitrogen rate on lodging-related stalk traits of summer maize. Plant, Soil and Environment, 62, 299-306.

Testa G, Reyneri A, Blandino M. 2016. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 72, 28–37.

Tang Q, Ren J H, Du X, Niu S D, Liu S S, Wei D J, Zhang Y R, Bian D H, Cui Y H, Gao Z. 2022. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. Frontiers in Plant Science, 13, 1035254.

Tian Q L, He L H, Shuang L, Wu L, Fei D, Wei Z, Zhong X Y, Ren W J. 2021. Indica rice restorer lines with large sink potential exhibit improved nutrient transportation to the panicle, which enhances both yield and nitrogen-use efficiency. Journal of Integrative Agriculture, 20, 1438-1456.

Wang K R, Xie R Z, Ming B, Hou P, Xue J, Li S K. 2021. Review of combine harvester losses for maize and influencing factors. International Journal of Agricultural and Biological Engineering, 14, 1-10.

Wang Z G, Gao J L, Ma B L. 2014. Concurrent improvement in maize yield and nitrogen use efficiency with integrated agronomic management strategies. Agronomy Journal, 106, 1243-1250.

Wei S S, Wang X Y, Zhang J W, Liu P, Zhao B, Li G, Dong S T. 2015. The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics. Plant Science, 233, 72-81.

Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71-79.

Xu G H, Fan X R, Miller A J. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 16, 2717-2725.

Xu X, Li X Y, Zhang Z F, Zhou X, Xia K, Gan L J. 2014. Effects of mixture compound of ethephon and glycinebetaine on the growth and development of maize. Journal of Maize Science, 22, 71-75. (in Chinese)

Ye D L, Zhang Y S, Al-Kaisi M M, Duan L S, Zhang M C, Li Z H. 2016. Ethephon improved stalk strength associated with summer maize adaptations to environments differing in nitrogen availability in the North China Plain. Journal of Agricultural Science, 154, 960-977.

Zhang W Q, Fan Y L, Zhang S, Lu B S, Duan L S, Li Z H, Tan W M. 2019. Waxy maize yield in response to a novel plant growth regulator and plant density. International Journal of Agriculture and Biology, 22, 304-312.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature, 528, 51-59.

Zhang Y, Wang H, Lei Q, Luo J, Lindsey S, Zhang J, Zhai L, Wu S, Zhang J, Liu H, Ren T, Liu H. 2018. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Science of the Total Environment, 618, 1173-1183.

Zhang Y H, Xu Z G, Li J, Wang R. 2021. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Frontiers in Plant Science, 12, 2461. 

Zhang Y S, Wang Y B, Liu C R, Ye D L, Ren D Y, Li Z H, Zhang M C. 2021. Ethephon reduces maize nitrogen uptake but improves nitrogen utilization in Zea mays L. Frontiers in Plant Science, 12, 3183.

Zhao Y N, Huang Y F, Li S, Chu X, Ye Y L. 2020. Improving the growth, lodging and yield of different density-resistance maize by optimizing planting density and nitrogen fertilization. Plant Soil and Environment, 66, 453-460.

No related articles found!
No Suggested Reading articles found!