Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Multiple chromosomal configurations and phylogenetic implications in Saccharum mitochondrial genomes

Guilong Lu1,2, Chang Zhang2, Qibin Wu2, Tingting Sun2, Shaolin Yang2, Erya Wei1, Junhui Li1, Youxiong Que2#

1 School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China

2 National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Yunnan Academy of Agricultural Sciences, Sanya 572024 / Kaiyuan 661600, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

线粒体在植物生长发育、配子育性和生态适应性方面扮演着重要角色。甘蔗(Saccharum spp. hybrids)是世界上最为重要的糖料和能源作物,割手密(S. Spontaneum)和斑茅(S. arundinaceum)是改良甘蔗品种特性和拓宽遗传基础的优异种质资源,但其线粒体基因组及相关研究却鲜有报道。我们的研究对斑茅1-6割手密2-2甘蔗杂交种GT42GT44LC05-136LC1541YZ08-1609的线粒体基因组进行了组装和深入解析。结果表明,这些基因组全长445,578-533,662 bp,编码33个蛋白编码基因(protein coding genes, PCGs),GC含量为43.43%-43.82%。斑茅、割手密和甘蔗杂交种的线粒体基因组主结构分别为三环、单环+线性和双环类型,且由重复序列介导重组产生多种潜在构象。基于线粒体基因的内含子序列开发了可区分斑茅、割手密和甘蔗杂交种的分子标记SAnad4i3。在这些物种的PCGs中鉴定到了540-581CURNA编辑位点,其中在斑茅中有6个编辑与创造起始或终止密码子有关,而在割手密和甘蔗杂交种中只鉴定到5个相关位点。进一步,在线粒体基因组中鉴定到了30-37个叶绿体基因组同源片段,其中以割手密数量最多、斑茅最少。进化分析显示,甘蔗在长期进化中可能经历了多次基因组重组和基因转移事件,并丢失了8PCGs。以上研究揭示了“甘蔗复合体”线粒体基因组的遗传多样性和复杂性,为物种分类和高倍体作物遗传进化研究提供了科学基础。



Abstract  

Mitochondria influence plant growth, fertility, and adaptation. Sugarcane (Saccharum hybrids) is the most important sugar and energy crop worldwide, and S. spontaneum and S. arundinaceum are excellent parental germplasm. However, few studies have been conducted on the mitochondrial genomes of sugarcane and related species. In this study, the mitogenomes of one S. arundinaceum, one S. spontaneum, and five sugarcane cultivars were assembled. The results showed that the sizes of these mitogenomes, encoding 33 protein-coding genes (PCGs), were between 445,578 and 533,662 bp, with a GC content of 43.43%-43.82%. The major structures of S. arundinaceum comprised three small rings, S. spontaneum had one ring and one linear structure, and sugarcane had two rings; there were multiple potential conformations due to repeat-mediated recombination. Furthermore, we developed an intron marker SAnad4i3 that can distinguish these species. Between 540 and 581 and from C to U RNA editing sites were identified in the PCGs, with six RNA editing sites were associated with the creation of start or stop codons in S. arundinaceum, and five sites each in S. spontaneum and the sugarcane hybrids were observed. Notably, 30-37 fragments homologous to chloroplast DNA were identified, with the highest number found in S. spontaneum. During evolution, these mitogenomes may have undergone multiple genomic reorganization and gene transfer events and lost eight PCGs. Collectively, this study reveals the genetic diversity and complexity of the Saccharum complex by providing a scientific basis for further germplasm identification and evolutionary research.

Keywords:  Saccharum       mitogenome        germplasm classification        RNA editing        gene transfer  
Online: 17 February 2025  
Fund: 

This work was supported by the Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center (CATASCXTD202402), National Key Research and Development Program of China (2022YFD2301100), National Key Laboratory for Tropical Crop Breeding (NKLTCB20230305, Hainan; NKLTCB-YAAS-2024-S01, Yunnan), the Agriculture Research System of China (CARS-17), and the Scientific Research Start-up Fund for High-level Introduced Talents of Henan Institute of Science and Technology (103020224001/073).

About author:  Guilong Lu, E-mail: luguilong666@126.com; #Correspondence Youxiong Que, E-mail: queyouxiong@126.com

Cite this article: 

Guilong Lu, Chang Zhang, Qibin Wu, Tingting Sun, Shaolin Yang, Erya Wei, Junhui Li, Youxiong Que. 2025. Multiple chromosomal configurations and phylogenetic implications in Saccharum mitochondrial genomes. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.018

Aliyari Rad S, Dehghanian Z, Asgari Lajayer B, Nobaharan K, Astatkie T. 2022. Mitochondrial respiration and energy production under some abiotic stresses. Journal of Plant Growth Regulation, 41, 3285-3299.

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Alverson A J, Wei X, Rice D W, Stern D B, Barry K, Palmer J D. 2010. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution, 27, 1436-1448.

Archibald J M, Richards T A. 2010. Gene transfer: anything goes in plant mitochondria. BMC Biology, 8, 147.

Arimura S I, Nakazato I. 2024. Genome editing of plant mitochondrial and chloroplast genomes. Plant and Cell Physiology, 65, 477-483.

Ayabe H, Toyoda A, Iwamoto A, Tsutsumi N, Arimura S I. 2023. Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number. Plant Physiology, 191, 2256-2275.

Baack E, Melo M C, Rieseberg L H, Ortiz‐Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytologist, 207, 968-984.

Batiru G, Lübberstedt T. 2024. Polyploidy in maize: from evolution to breeding. Theoretical and Applied Genetics, 137, 182.

Butenko A, Lukeš J, Speijer D, Wideman J G. 2024. Mitochondrial genomes revisited: why do different lineages retain different genes?. BMC Biology, 22, 15.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194-1202.

Chen S. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta, 2, e107.

Chen Z, Zhao N, Li S, Grover C E, Nie H, Wendel J F, Hua J. 2017. Plant mitochondrial genome evolution and cytoplasmic male sterility. Critical Reviews in Plant Sciences, 36, 55-69.

Chevigny N, Schatz-Daas D, Lotfi F, Gualberto J M. 2020. DNA repair and the stability of the plant mitochondrial genome. International Journal of Molecular Sciences, 21, 328.

Chorev M, Carmel L. 2012. The function of introns. Frontiers in Genetics, 3, 55.

Christensen A C. 2014. Genes and junk in plant mitochondria—repair mechanisms and selection. Genome biology and evolution, 6, 1448-1453.

Chu D, Wei L. 2020. Reduced C-to-U RNA editing rates might play a regulatory role in stress response of Arabidopsis. Journal of Plant Physiology, 244, 153081.

Chuong E B, Elde N C, Feschotte C. 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics, 18, 71-86.

Dinesh Babu K S, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar T R. 2022. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genetic Resources and Crop Evolution, 69, 2623-2643.

Dong H, Clark L V, Jin X, Anzoua K, Bagmet L, Chebukin P, Dzyubenko E, Dzyubenko N, Ghimire B K, Heo K, Johnson D A, Nagano H, Sabitov A, Peng J, Yamada T, Yoo J H, Yu C Y, Zhao H, Long S P, Sacks E J. 2021. Managing flowering time in Miscanthus and sugarcane to facilitate intra- and intergeneric crosses. PLoS One, 16, e0240390.

Evans D L, Hlongwane T T, Joshi S V, Pachón D M R. 2019a. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ, 7, e7558.

Evans D L, Joshi S V, Wang J. 2019b. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evolutionary Biology, 19, 33.

FAO. 2022. FAOSTAT. http://www.fao.org/-faostat/zh/#data/.

Feschotte C. 2023. Transposable elements: McClintock’s legacy revisited. Nature Reviews Genetics, 24, 797-800.

Forner J, Kleinschmidt D, Meyer E H, Gremmels J, Morbitzer R, Lahaye T, Schöttler M A, Bock R. 2023. Targeted knockout of a conserved plant mitochondrial gene by genome editing. Nature Plants, 9, 1818-1831.

Garcia L E, Edera A A, Palmer J D, Sato H, Sanchez-Puerta M V. 2021. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. New Phytologist, 229, 1701-1714.

Geige O, Sanchez-Flores A, Padilla-Gomez J, Esposti M D. 2023. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Advanced Science, 9, eadh0066.

Grosser M R, Sites S K, Murata M M, Lopez Y, Chamusco K C, Love Harriage K, Grosser J W, Graham J H, Gmitter Jr F G, Chase C D. 2023. Plant mitochondrial introns as genetic markers - conservation and variation. Frontiers in Plant Science, 14, 1116851.

Gualberto J M, Newton K J. 2017. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annual Review of Plant Biology, 68, 225-252.

Healey A L, Garsmeur O, Lovell J T, Shengquiang S, Sreedasyam A, Jenkins J, Plott C B, Piperidis N, Pompidor N, Llaca V, Metcalfe C J, Doležel J, Cápal P, Carlson J W, Hoarau J Y, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, et al. 2024. The complex polyploid genome architecture of sugarcane. Nature, 628, 804-810.

Huang K, Xu W, Hu H, Jiang X, Sun L, Zhao W, Long B, Fan S, Zhou Z, Mo P, Jiang X, Tian J, Deng A, Xie P, Wang Y. 2024. The mitochondrial genome of Cathaya argyrophylla reaches 18.99 Mb: Analysis of super-large mitochondrial genomes in Pinaceae. arXiv preprint arXiv:2410.07006.

Hu H L, Zhang F, Wang P, Lu F H. 2023. Evolutionary genetics of wheat mitochondrial genomes. Crop Journal, 11, 1774-1781.

Jin J, Yu W, Yang J, Song Y, dePamphilis C W, Yi T, Li D. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241.

Jo B S, Choi S S. 2015. Introns: the functional benefits of introns in genomes. Genomics and Informatics, 13, 112.

Kadowaki K, Ozawa K, Kazama S, Kubo N, Akihama T. 1995. Creation of an initiation codon by RNA editing in the coxI transcript from tomato mitochondria. Current Genetics, 28, 415-422.

Kan S L, Shen T T, Ran J H, Wang X Q. 2021. Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome. BMC Biology, 19, 146.

Katoh K, Asimenos G, Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, 537, 39-64.

Keeling P J. 2024. Horizontal gene transfer in eukaryotes: aligning theory with data. Nature Reviews Genetics, 2, 416-430.

Khera P, Saxena R, Sameerkumar C V, Saxena K, Varshney R K. 2015. Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica, 206, 737-746.

Knoop V. 2023. C-to-U and U-to-C: RNA editing in plant organelles and beyond. Journal of Experimental Botany, 74, 2273-2294.

Kozik A, Rowan B A, Lavelle D, Berke L, Schranz M E, Michelmore R W, Christensen A C. 2019. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS genetics, 15, e1008373.

Kumar S, Agarwal S, Prasad R. 2015. Efficient Read Alignment Using Burrows Wheeler Transform and Wavelet Tree. In: 2015 Second International Conference on Advances in Computing and Communication Engineering, Dehradun, India, pp. 133-138.

Kuwabara K, Arimura S I, Shirasawa K, Ariizumi T. 2022. orf137 triggers cytoplasmic male sterility in tomato. Plant Physiology, 189, 465-468.

Li J, Ni Y, Lu Q, Chen H, Liu C. 2024c. PMGA: A plant mitochondrial genome annotator. Plant communications, 9, 101191.

Li S, Wang Z, Jing Y, Duan W, Yang X. 2024a. Graph-based mitochondrial genomes of three foundation species in the Saccharum genus. Plant Cell Reports, 43, 191.

Li S, Yang C, Wang Z, Xu C, Zhang G, Huang Y, Zhang B, Zhou S, Gao Y, Zong W, Duan W, Yang X. 2024b. Assembly and comparative genome analysis of four mitochondrial genomes from Saccharum complex species. Frontiers in Plant Science, 15, 1421170.

Liu J, Hu J Y, Li D Z. 2024. Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae). Plant Cell Reports, 43, 36.

Lu G, Wang W, Mao J, Li Q, Que Y. 2023. Complete mitogenome assembly of Selenicereus monacanthus revealed its molecular features, genome evolution, and phylogenetic implications. BMC Plant Biology, 23, 541.

Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song C P, Huang J. 2022. Major episodes of horizontal gene transfer drove the evolution of land plants. Molecular Plant, 15, 857-871.

Maliga P. 2022. Engineering the plastid and mitochondrial genomes of flowering plants. Nature Plants, 8, 996-1006.

Melonek J, Duarte J, Martin J, Beuf L, Murigneux A, Varenne P, Comadran J, Specel S, Levadoux S, Bernath-Levin K, Torney F, Pichon J P, Perez P, Small I. 2021. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nature Communications, 12, 1036.

Mhiri C, Borges F, Grandbastien M A. 2022. Specificities and dynamics of transposable elements in land plants. Biology, 11, 488.

Møller I M, Rasmusson A G, Van Aken O. 2021. Plant mitochondria–past, present and future. Plant Journal, 108, 912-959.

Mower J P, Sloan D B, Alverson A J. 2012. Plant mitochondrial genome diversity: the genomics revolution. In: Wendel J F, Greilhuber J, Dolezel J, Leitch I J, Eds., In Plant Genome Diversity Vol. 1. Springer Vienna, Vienna, pp. 123-144.

Mower J P. 2020. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion, 53, 203-213.

Nguyen T T, Hoang Q T, Nguyen T T, Pham T A, Cao A D, Pham H D, Le V H, Vu T T, Pham N H, Nguyen T C, To K A, Nguyen V H, Phi Q T, Tran V H, Dang T T, Lai Q D, Lionnet R, Chu-Ky S. 2022. Research and development prospects for sugarcane industry in Vietnam. Sugar Tech, 24, 1330-1341.

Oliver K R, McComb J A, Greene W K. 2013. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biology and Evolution, 5, 1886-901.

Picardi E, Pesole G. 2013. REDItools: High-throughput RNA editing detection made easy. Bioinformatics, 29, 1813-1814.

Rice D W, Alverson A J, Richardson A O, Young G J, Sanchez-Puerta M V, Munzinger J, Barry K, Boore J L, Zhang Y, dePamphilis C W, Knox E B, Palmer J D. 2013. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 342, 1468-73.

Richardson A O, Rice D W, Young G J, Alverson A J, Palmer J D. 2013. The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biology, 11, 29.

Sattler M C, Carvalho C R, Clarindo W R. 2016. The polyploidy and its key role in plant breeding. Planta, 243, 281-296.

Sharma C K, Gupta A, Sharma M. 2024. Molecular marker: genetic improvement and conservation of industrial crops. In: Kumar N, Eds., In Industrial Crop Plants, Springer Nature Singapore, Singapore, pp. 101-122.

Shearman J R, Sonthirod C, Naktang C, Pootakham W, Yoocha T, Sangsrakru D, Jomchai N, Tragoonrung S, Tangphatsornruang S. 2016. The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads. Scientific Reports, 6, 31533.

Skippington E, Barkman T J, Rice D W, Palmer J D. 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proceedings of the National Academy of Sciences of the United States of America, 112, E3515-24.

Small I D, Schallenberg‐Rüdinger M, Takenaka M, Mireau H, Ostersetzer‐Biran O. 2020. Plant organellar RNA editing: what 30 years of research has revealed. Plant Journal, 101, 1040-1056.

Šmarda P, Bureš P, Horová L, Leitch I J, Mucina L, Pacini E, Tichý L, Grulich V, Rotreklová O. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America, 111, E4096-102.

Smith D R. 2016. The mutational hazard hypothesis of organelle genome evolution: ten years on. Molecular Ecology, 25, 3769-3775.

Sodmergen Q. 2003. Cytological evidence for preservation of mitochondrial and plastid DNA in the mature generative cells of Chlorophytum spp. (Liliaceae). Protoplasma221, 211-216.

Song J, Zhang X, Jones T, Wang M L, Ming R. 2024. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum. Plant Reproduction, 37, 489-506.

Stephan G, Pascal L, Ralph B. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47, W59-W64.

Sun M, Zhang M, Chen X, Liu Y, Liu B, Li J, Wang R, Zhao K, Wu J. 2022. Rearrangement and domestication as drivers of Rosaceae mitogenome plasticity. BMC Biology, 20, 181.

Suzuki N. 2023. Fine tuning of ROS, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. International Journal of Molecular Sciences, 24, 1356.

The Angiosperm Phylogeny Group, Chase M W, Christenhusz M J M, Fay M F, Byng J W, Judd W S, Soltis D E, Mabberley D J, Sennikov A N, Soltis P S, Stevens P F. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.

Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. 2024. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life‐history traits and climatic conditions. New Phytologist, 224, 1642-1656.

Van Aken O. 2021. Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiology, 186, 36-52.

Vicient C M, Casacuberta J M. 2017. Impact of transposable elements on polyploid plant genomes. Annals of Botany, 120, 195-207.

Wang J, Kan S, Liao X, Zhou J, Tembrock L R, Daniell H, Jin S, Wu Z. 2024. Plant organellar genomes: Much done, much more to do. Trends in Plant Science, 27, 754-769.

Wang J, Xu G, Ning Y, Wang X, Wang G. 2022. Mitochondrial functions in plant immunity. Trends in Plant Science, 27, 1063-1076.

Wang J, Zou Y, Mower J P, Reeve W, Wu Z. 2024. Rethinking the mutation hypotheses of plant organellar DNA. Genomics Communications, 1, e003.

Wang X, Zhang R, Yun Q, Xu Y, Zhao G, Liu J, Shi S, Chen Z, Jia L. 2021. Comprehensive analysis of complete mitochondrial genome of Sapindus mukorossi Gaertn.: an important industrial oil tree species in China. Industrial Crops and Products, 174, 114210.

Wei L, Fei Z, Ding Y. 2010. Mitochondrial RNA editing of ATPase atp6 gene transcripts of Yunnan purple rice (Oryza sativa L.). Journal of Wuhan Botanical Research, 28, 251-256. (in Chinese).

Welchen E, Canal M V, Gras D E, Gonzalez D H. 2021. Cross-talk between mitochondrial function and growth/stress signalling pathways in plants. Journal of Experimental Botany, 72, 4102-4118.

Wick R R, Judd L M, Gorrie C L, Holt K E. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13, e1005595.

Wu C S, Chaw S M. 2022. Evolution of mitochondrial RNA editing in extant gymnosperms. Plant Journal, 111, 1676-1687.

Wu Z, Liao X, Zhang X, Tembrock L R, Broz A. 2022. Genomic architectural variation of plant mitochondria - A review of multichromosomal structuring. Journal of Systematics and Evolution, 60, 160-168.

Wynn E L, Christensen A C. 2019. Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution. G3-Genes Genomes Genetics, 9, 549-559.

Xia L, Cheng C, Zhao X, He X, Yu X, Li J, Wang Y, Chen J. 2022. Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene, 823, 146342.

Xu G, Guo C, Shan H, Kong H. 2012. Divergence of duplicate genes in exon–intron structure. Proceedings of the National Academy of Sciences of the United States of America, 109, 1187-1192.

Xue L, Li X, Huang Y, Ou C, Wu X, Yu Z, Cui Z, Zhang M, Deng Z, Yu F. 2024. Component characterization of chromosome sets in the hybrids between sugarcane and Tripidium arundinaceum. Acta Agronomica Sinica, 50, 633-644. (in Chinese).

Yan S, Zhu S, Mao L, Huang R, Xiong H, Shen L, Shen X. 2017. Molecular identification of the cytoplasmic male sterile source from Dongxiang wild rice (Oryza rufipogon Griff.). Journal of Integrative Agriculture, 16, 1669-1675.

Yin Z. 2022. Mitochondrial genomes of modern sugarcane hybrids ROC22 and FN15 and the comparative studies. MSc thesis, Hunan University of Science and Technology, China. (in Chinese).

Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, et al. 2022a. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 54, 885-896.

Zhang Y, Shen Z, Meng X, Zhang L, Liu Z, Liu M, Zhang F, Zhao J. 2022b. Codon usage patterns across seven Rosales species. BMC Plant Biology, 22, 65.

Zhou J, Nie L, Zhang S, Mao H, Arimura S I, Jin S, Wu Z. 2024. Mitochondrial genome editing of WA352 via mitoTALENs restore fertility in cytoplasmic male sterile rice. Plant Biotechnology Journal, 22, 1960-1962.

Zhou Z, Dang Y, Zhou M, Li L, Yu C H, Fu J, Chen S, Liu Y. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proceedings of the National Academy of Sciences of the United States of America, 113, E6117-E6125.

Zwonitzer K D, Tressel L G, Wu Z, Kan S, Broz A K, Mower J P, Ruhlman T A, Jansen R K, Sloan D B, Havird J C. 2024. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 121, e2317240121.

No related articles found!
No Suggested Reading articles found!