Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Inner membrane protein TolA facilitates the antibiotic resistance, environment adaptability, biofilm formation and virulence of avian pathogenic Escherichia coli

Shuangyang Li1, 2*, Jiangang Hu1*, Chang Liu1, Zizhu Lin1, Haoheng Peng1, Beibei Zhang1, Xinyu Wang1, Weiqi Guo1, Jingjing Qi1, Mingxing Tian1, Yanqing Bao1, Guangdong Zhang1, Yuxiang Shi2#, Shaohui Wang1#

1 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2 College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056001, China

 Highlights 

1. TolA enhances the antibiotic resistance and environment adaptability of APEC.

2. TolA promotes the biofilm formation and interbacterial competition of APEC.

3. TolA facilitates the infection and virulence of APEC. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禽致病性大肠杆菌(Avian pathogenic Escherichia coli, APEC)可引起禽大肠杆菌病,给养禽业造成重大经济损失。细胞膜是细菌赖以生存的重要结构,其对细菌的环境适应毒力至关重要。Tol-pal系统是革兰阴性菌中由五种蛋白组成的动态复合体,其中内膜蛋白TolA有助于维持细胞膜的完整性。然而,内膜蛋白TolA在APEC环境适应性和致病性中的作用尚不完全清楚。因此,本研究构建APEC菌株tolA基因缺失株和互补株,分析TolAAPEC生物学特性及毒力的影响。结果发现,缺失tolA基因导致APEC形态显著变化鞭毛减少运动性降低外膜囊泡产量增加tolA基因缺失株的细胞膜完整性受损,从而降低其对抗生素耐受性和环境压力适应性通过荧光定量PCR分析发现tolA基因缺失引起生物被膜相关基因及VI型分泌系统基因转录水平下调,导致生物被膜形成能力和细菌间竞争能力均下降。与野生株和互补株相比,tolA基因缺失株的抗血清杀菌能力、细胞黏附入侵能力胞内存活能力、体内定植能力均显著降低,导致宿主产生较少的炎症及致死率。结果表明,内膜蛋白TolA在APEC的抗生素耐受性、环境适应能力、生物被膜形成及致病性等方面发挥重要作用,为阐明APEC的环境适应性及致病机制提供参考。



Abstract  

Avian pathogenic Escherichia coli (APEC) could cause colibacillosis, which is economically devastating to poultry industries worldwide. The bacterial membrane is critical to its environment adaptability and virulence. The inner membrane protein TolA maintains membrane integrity, but the roles of which in fitness and pathogenesis of APEC are not completely understood. Thus, the tolA gene mutant and complemented strains of APEC were constructed and characterized. We found that mutant strain ΔtolA was damaged in inner and outer membranes, and showed altered morphology, impaired flagella production, reduced motility, increased outer membrane vesicles (OMVs) production, decreased resistance to antibiotics and environmental stress. Deletion of tolA gene resulted in a significant decrease in biofilm formation and interbacterial competition, due to the downregulated expression of biofilm-associated genes and type VI secretion system (T6SS) genes, respectively. In addition, the mutant strain exhibited diminished serum bactericidal resistance, reduced cell infection capacity, decreased intracellular survival, consequently, leading to attenuated bacterial survival and virulence in mice. Compared with the wild-type and complemented strains, mutant strain induced less expression of inflammatory cytokine interleukin 1 beta (IL-1β) in HD-11 macrophages, consistent with the pathological damage in mice. In conclusion, inner membrane protein TolA contributed to the antibiotic resistance, environment adaptability, biofilm formation and virulence of APEC.

Keywords:  Avian pathogenic Escherichia coli       TolA       Membrane integrity              Biofilm              Virulence  
Online: 12 February 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2021YFD1800402), National Natural Science Foundation of China (32172856, 32302881), the Natural Science Foundation of Shanghai (22ZR1476100, 23ZR1476600), the China Postdoctoral Science Foundation (2023M743852), the Shanghai Oriental Talent Plan, and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021-SHVRI-07).

About author:  Shuangyang Li, E-mail: lsy12201102@126.com; Jiangang Hu, E-mail: vethjg@163.com; #Correspondence Shaohui Wang, Tel: +86-15821927863, E-mail: shwang@shvri.ac.cn; Yuxiang Shi, Tel: +86-13785085092, E-mail: hbyxshi@126.com * These authors contributed equally to this study.

Cite this article: 

Shuangyang Li, Jiangang Hu, Chang Liu, Zizhu Lin, Haoheng Peng, Beibei Zhang, Xinyu Wang, Weiqi Guo, Jingjing Qi, Mingxing Tian, Yanqing Bao, Guangdong Zhang, Yuxiang Shi, Shaohui Wang. 2025. Inner membrane protein TolA facilitates the antibiotic resistance, environment adaptability, biofilm formation and virulence of avian pathogenic Escherichia coli. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.012

Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos J A, Cedillo-Ramírez M L, Girón J A. 2022. The transcription of flagella of enteropathogenic Escherichia coli O127:H6 is activated in response to environmental and nutritional signals. Microorganisms, 10, 792.

Baccelli P, Rachedi R, Serrano B, Petiti M, Bernard C S, Houot L, Duche D. 2022. Timing of TolA and TolQ recruitment at the septum depends on the functionality of the Tol-Pal system. Journal of Molecular Biology, 434, 167519.

Choi A H K, Slamti L, Avci F Y, Pier G B, Maira-Litrán T. 2009. The pgaABCD locus of acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. Journal of Bacteriology, 191, 5953-5963.

Datsenko K A, Wanner B L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640-6645.

Derouiche R, Bénédetti H, Lazzaroni J C, Lazdunski C, Lloubès R. 1995. Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. The Journal of Biological Chemistry, 270, 11078-11084.

Derouiche R, Gavioli M, Bénédetti H, Prilipov A, Lazdunski C, Lloubès R. 1996. TolA central domain interacts with Escherichia coli porins. The EMBO Journal, 15, 6408-6415.

Germon P, Ray M C, Vianney A, Lazzaroni J C. 2001. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. Journal of Bacteriology, 183, 4110-4114.

Haurat M F, Elhenawy W, Feldman M F. 2015. Prokaryotic membrane vesicles: new insights on biogenesis and biological roles. Biological Chemistry, 396, 95-109.

Hirakawa H, Suzue K, Kurabayashi K, Tomita H. 2019. The Tol-Pal system of uropathogenic Escherichia coli is responsible for optimal internalization into and aggregation within bladder epithelial cells, colonization of the urinary tract of mice, and bacterial motility. Frontiers in Microbiology, 10, 1827.

Hu J, Che C, Jiang W, Chen Z, Tu J, Han X, Qi K. 2022a. Avian pathogenic Escherichia coli through Pfs affects the tran-scription of membrane proteins to resist β-lactam antibiotics. Veterinary Sciences, 9, 98.

Hu J, Lv X, Niu X, Yu F, Zuo J, Bao Y, Yin H, Huang C, Nawaz S, Zhou W, Jiang W, Chen Z, Tu J, Qi K, Han X. 2022b. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli. Journal of Applied Microbiology, 132, 4236-4251.

Hu J, Zuo J, Chen Z, Fu L, Lv X, Hu S, Shi X, Jing Y, Wang Y, Wang Z, Mi R, Huang Y, Liu D, Qi K, Han X. 2019. Use of a modified bacterial ghost lysis system for the construction of an inactivated avian pathogenic Escherichia coli vaccine candidate. Veterinary Microbiology, 229, 48-58.

Ju X, Fang X, Xiao Y, Li B, Shi R, Wei C, You C. 2021. Small RNA GcvB regulates oxidative stress response of Escherichia coli. Antioxidants (Basel, Switzerland), 10, 1774.

Kowata H, Tochigi S, Kusano T, Kojima S. 2016. Quantitative measurement of the outer membrane permeability in Escherichia coli lpp and tol-pal mutants defines the significance of Tol-Pal function for maintaining drug resistance. The Journal of Antibiotics, 69, 863-870.

Lazzaroni J C, Germon P, Ray M C, Vianney A. 1999. The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiology Letters, 177, 191-197.

Li J, Attila C, Wang L, Wood T K, Valdes J J, Bentley W E. 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. Journal of bacteriology, 189, 6011-6020.

Li Q, Li Z, Fei X, Tian Y, Zhou G, Hu Y, Wang S, Shi H. 2022. The role of TolA, TolB, and TolR in cell morphology, OMVs production, and virulence of Salmonella Choleraesuis. AMB Express, 12, 5.

Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter R J, Wang Z. 2020. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics, 10, 10697-10711.

Ma J, Bao Y, Sun M, Dong W, Pan Z, Zhang W, Lu C, Yao H. 2014. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infection and Immunity, 82, 3867-3879.

Ma J, Sun M, Pan Z, Song W, Lu C, Yao H. 2018. Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerging Microbes & Infections, 7, 49.

Morgan J K, Ortiz J A, Riordan J T. 2014. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microbial Pathogenesis, 77, 42-52.

Pramoonjago P, Kaneko M, Kinoshita T, Ohtsubo E, Takeda J, Hong K S, Inagi R, Inoue K. 1992. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. Journal of Immunology, 148, 827-836.

Reimer S L, Beniac D R, Hiebert S L, Booth T F, Chong P M, Westmacott G R, Zhanel G G, Bay D C. 2021. Comparative analysis of outer membrane vesicle isolation methods with an Escherichia coli tolA mutant reveals a hypervesiculating phenotype with outer-inner membrane vesicle content. Frontiers in Microbiology, 12, 628801.

Schwechheimer C, Kuehn M J. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 13, 605-619.

Sharma P, Vaiwala R, Gopinath A K, Chockalingam R, Ayappa K G. 2024. Structure of the bacterial cell envelope and interactions with antimicrobials: insights from molecular dynamics simulations. Langmuir, 40, 7791-7811.

Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong T G, Wang Y, Shen X. 2021. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nature Communications, 12, 423.

Song X, Hou M, Jiang H, Shen X, Xue M, Shao Y, Wang L, He Q, Zheng L, Tu J, Qi K. 2020. Hcp2a of type VI secretion system contributes to IL8 and IL1β expression of chicken tracheal epithelium by affecting APEC colonization. Research in Veterinary Science, 132, 279-284.

Su S, Li Z, Sun Y, Gao S, Gao Q. 2024. The multifaceted role of TolA protein in promoting survival, biofilm formation and virulence of avian pathogenic Escherichia coli. Poultry Science, 103, 104142.

Walburger A, Lazdunski C, Corda Y. 2002. The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Molecular Microbiology, 44, 695-708.

Wang S, Dai J, Meng Q, Han X, Han Y, Zhao Y, Yang D, Ding C, Yu S. 2014. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Frontiers in Microbiology, 5, 588.

Weber M M, French C L, Barnes M B, Siegele D A, Mclean R J C. 2010. A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. Microbiology (Reading, England), 156, 139-147.

Wei J, Chen C, Feng J, Zhou S, Feng X, Yang Z, Lu H, Tao H, Li L, Xv H, Xuan J, Wang F. 2023. Muc2 mucin O-glycosylation interacts with enteropathogenic Escherichia coli to influence the development of ulcerative colitis based on the NF-kB signaling pathway. Journal of Translational Medicine, 21, 793.

Yao L, Bao Y, Hu J, Zhang B, Wang Z, Wang X, Guo W, Wang D, Qi J, Tian M, Bao Y, Li H, Wang S. 2023. A lytic phage to control multidrug-resistant avian pathogenic Escherichia coli (APEC) infection. Frontiers in Cellular and Infection Microbiology, 13, 1253815.

Yi Z, Wang D, Xin S, Zhou D, Li T, Tian M, Qi J, Ding C, Wang S, Yu S. 2019. The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli. Veterinary Research, 50, 40.

Zgair A K. 2012. Escherichia coli flagellin stimulates pro-inflammatory immune response. World Journal of Microbiology & Biotechnology, 28, 2139-2146.

Zhang Y, Wang Y, Zhu H, Yi Z, Afayibo D J A, Tao C, Li T, Tian M, Qi J, Ding C, Yu S, Wang S. 2021. DctR contributes to the virulence of avian pathogenic Escherichia coli through regulation of type III secretion system 2 expression. Veterinary Research, 52, 101.

Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. 2023. Outer membrane porins contribute to antimicrobial resistance in Gram-negative bacteria. Microorganisms, 11, 1690.

Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim K S, Zhao G-P, Guo X, Yao Y. 2012. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infection and Immunity, 80, 1243-1251.

Zuo J, Tu C, Wang Y, Qi K, Hu J, Wang Z, Mi R, Yan H, Chen Z, Han X. 2019. The role of the wzy gene in lipopolysaccharide biosynthesis and pathogenesis of avian pathogenic Escherichia coli. Microbial Pathogenesis, 127, 296-303.

No related articles found!
No Suggested Reading articles found!