Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification of novel QTL contributing to resistance against Aspergillus flavus in maize (Zea mays L.) using an enlarged genotype panel

Jianxin Li1, Lianglei Zhang1, Xiang Guo1, Jihong Zhang1, Shiwei Wang1, Xinyu Sun1, Haiyang Duan1, Huiling Xie1, Dong Ding1, Jihua Tang1, 2#, Xuehai Zhang1#

1 National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China 

2 The Shennong Laboratory, Zhengzhou 450002, China 

 Highlights 

1. Temperate inbreds showed greater resistance to A. flavus compared to tropical and subtropical materials.

2. The identification of fifteen novel QTLs using an enlarged genotype panel suggests that higher marker density enhances the statistical power of GWAS.

3. Inbreds with the favorable haplotype combination of the two genes (Zm00001d033637 and Zm00001d021197) demonstrated significant resistance to A. flavus. The gene Zm00001d021197 was selected during the domestication of teosinte (Zea mays ssp. mexicana) into modern maize and during the adaptation from tropical/subtropical maize to temperate maize. Molecular markers in the promoter region of Zm00001d021197 can efficiently identify maize germplasm with beneficial haplotypes for resistance to A. flavus.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米作为重要的全球性作物,是主要的食品和饲料来源。然而,其籽粒易受黄曲霉菌侵染,该真菌因其能够产生高毒性且致癌的黄曲霉毒素而闻名,对人类及动物健康构成严重威胁。因此,鉴定与抗黄曲霉毒素相关的数量性状位点(QTL)并培育抗黄曲霉毒素的玉米品种,对于降低黄曲霉毒素污染风险具有重要意义。本研究致力于通过提升基因型标记密度,深入探索玉米抗黄曲霉性的遗传基础。对一个包含311个玉米自交系的群体在受控环境下进行黄曲霉接种试验并收集其黄曲霉抗性表型数据。利用这些丰富的表型与基因型,进行全基因组关联分析(GWAS),旨在鉴定与黄曲霉抗性紧密相关的遗传位点。结果显示,黄曲霉抗性表型呈现出正态分布特征,且温带自交系相较于热带/亚热带材料展现出更强的黄曲霉抗性。通过GWAS分析,成功鉴定出15个新的QTL,这些QTL能够解释8.22%27.71%的表型变异,并覆盖了47个高表达基因。这一发现表明,基因型标记密度的增加显著提升了GWAS的统计功效。进一步的功能注释分析,包括GOKEGG富集分析表明,这些基因与脂肪酸合成、糖苷分解和根系生长发育密切相关。位于ZmAFR16上的基因Zm00001d021197呈现簇状峰,平均可解释10.21%的表型变异,发现该基因在细胞膜形成过程中发挥作用,并具有α-L-岩藻糖苷酶活性,可促进糖代谢,有助于多糖降解。单倍型分析显示,Zm00001d033637Zm00001d021197的不同单倍型对黄曲霉抗性存在显著差异。携带这两个基因的有利单倍型组合的玉米自交系表现出对黄曲霉较强的抗性。选择扫描分析结果显示,在大刍草(Zea mays ssp. mexicana)驯化为现代玉米过程中,以及热带/亚热带玉米适应温带玉米过程中,Zm00001d021197受到了选择。更为重要的是,我们在Zm00001d021197启动子区域开发了分子标记,能够有效鉴定出具有抗黄曲霉优异单倍型的玉米种质资源。这些研究结果不仅深化了我们对于影响玉米籽粒抗黄曲霉抗性遗传因子的理解,还为改良现有种质、培育具有更强抗病性的玉米新品种提供了宝贵的理论依据和技术支持。



Abstract  

Maize (Zea mays L.) is a crucial global crop, serving as a primary source of food and feed.  However, its kernels are susceptible to infection by Aspergillus flavus, a fungus known for producing aflatoxins- highly carcinogenic compounds harmful to human and animal health. Identifying quantitative trait loci (QTLs) for aflatoxin resistance and developing aflatoxin-resistant maize varieties are essential for mitigating aflatoxin contamination.  In this study, we conducted a genome-wide association study (GWAS) using an enlarged genotypic panel of 311 maize inbred lines to identify genetic loci associated with A. flavus resistance.  Phenotypic data on A. flavus resistance were collected through controlled inoculation experiments conducted under controlled conditions.  The results revealed that the resistance traits to A. flavus follow a normal distribution. Additionally, temperate inbreds exhibited stronger resistance to A. flavus than tropical/subtropical materials.  This study identified 15 novel QTLs encompassing 47 high-expressed genes, with each QTL explaining 8.22-27.71% of the phenotypic variation, indicating that increased marker density improved statistical power.  Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes are related to fatty acid synthesis, glycoside decomposition, and root growth and development.  One specific gene, Zm00001d021197, located on ZmAFR16, displayed clustered peaks and accounted for an average of 10.21% of the phenotypic variation.  This gene was found to play a role in cell membrane formation and possess alpha-L-fucosidase activity, promoting glycoside metabolism and contributing to polysaccharide degradation.  Haplotype analysis showed significant differences in resistance to A. flavus among different haplotypes of the Zm00001d033637 and Zm00001d021197.  Inbreds carrying the favorable haplotype combination of these two genes exhibited strong resistance to A. flavus.  By select sweep analysis, it was found that Zm00001d021197 was selected during the domestication of teosinte (Zea mays ssp. mexicana) to modern maize, as well as during the adaptation from tropical/subtropical maize to temperate maize. Importantly, we developed molecular markers in the promoter region of Zm00001d021197 to efficiently identify maize germplasm with beneficial haplotypes for resistance to A. flavus.  These findings not only enhance our understanding of the genetic factors influencing maize kernel resistance to A. flavus but also offer valuable insights for improving existing germplasm and developing new maize varieties with enhanced resistance to this pathogen.

Keywords:  maize       Aspergillus flavus resistance        genome-wide association analysis        mycorrhizal fungal symbiosis        fatty acid synthesis and elongation        XP-CLR  
Online: 03 January 2025  
Fund: 

We thank Jianbing Yan’s group from Huazhong Agricultural University and Lu Chen’s group from Zhejiang University for providing maize genotypic data.  This research was financially by the National Natural Science Foundation of China (32171980), the China Postdoctoral Science Foundation (2020M682295), the Henan Province Science and Technology Attack Project, China (232102110181, 242102110307), the Natural Science Foundation Youth Fund Project of Henan Province, China (232300421261), and the Henan Provincial Higher Education Key Research Project, China (24B210003).

 

About author:  #Correspondence Xuehai Zhang, Tel: +86-371-56990188, Fax: +86-371-56990186, E-mail: xuehai85@126.com; Jihua Tang, E-mail: tangjihua1@163.com

Cite this article: 

Jianxin Li, Lianglei Zhang, Xiang Guo, Jihong Zhang, Shiwei Wang, Xinyu Sun, Haiyang Duan, Huiling Xie, Dong Ding, Jihua Tang, Xuehai Zhang. 2025. Identification of novel QTL contributing to resistance against Aspergillus flavus in maize (Zea mays L.) using an enlarged genotype panel. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.01.002

Amaike S, Keller N P. 2011. Aspergillus flavus. Annual Review of Phytopathology, 49, 107-133.

Ascencio-Ibáñez J T, Sozzani R, Lee T J, Chu T M, Wolfinger R D, Cella R, Hanley-Bowdoin L. 2008. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology, 148, 436-454.

Baisakh N, Da Silva E A, Pradhan A K, Rajasekaran K. 2023. Comprehensive meta-analysis of QTL and gene expression studies identify candidate genes associated with Aspergillus flavus resistance in maize. Frontiers in Plant Science, 14, 1214907.

Brooks T D, Williams W P, Windham G L, Willcox M C, Abbas H K. 2005. Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E. Crop Science, 45, 171-174.

Caceres I, Khoury A A, Khoury R E, Lorber S, Oswald I P, Khoury A E, Atoui A, Puel O, Bailly J D. 2020. Aflatoxin biosynthesis and genetic regulation: A review. Toxins (Basel), 12, 150.

Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps. Genome Research20, 393–402.

Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal J S, Rellán-Álvarez R, Sawers R J H, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, et al. 2022. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nature Genetics, 54, 1736-1745.

Cheng S, Wu T, Zhang H, Sun Z, Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Wu X, Jia H. 2023. Mining lactonase gene from aflatoxin B1-degrading strain Bacillus megaterium and degrading properties of the recombinant enzyme. Journal of Agricultural and Food Chemistry, 71, 20762-20771.

Cogliano V J, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Wild CP. 2011. Preventable exposures associated with human cancers. Journal of the National Cancer Institute, 103, 1827-1839.

Ding J. 2016. Analysis of primary mapping of resistance to Aspergillus flavous gene and haploid induction and doubling technique in maize. MSc thesis, Anhui Agricultural University, Anhui Province, China. (in Chinese)

Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. 2008. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. The Plant cell, 20, 228-240.

Downie J A. 2010. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews34, 150-170.

Eaton D L, Gallagher E P. 1994. Mechanisms of aflatoxin carcinogenesis. Annual Review of Pharmacology and Toxicology34, 135-172.

Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna B M. 2022. Global maize production, consumption and trade: Trends and R&D implications. Food Security, 14, 1295-1319.

Fu H. 2018. Preventive Medicine. 7th ed. People’s Health Publishing House, Beijing. (in Chinese)

Gui S, Yang L, Li J, Luo J, Xu X, Yuan J, Chen L, Li W, Yang X, Wu S, Li S, Wang Y, Zhu Y, Gao Q, Yang N, Yan J. 2020. ZEAMAP, a comprehensive database adapted to the maize multi-omics era. iScience, 23, 101241.

Han G, Li C, Xiang F, Zhao Q, Zhao Y, Cai R, Cheng B, Wang X, Tao F. 2020. Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. BMC Plant Biology, 20, 206.

Hedayati M T, Pasqualotto A C, Warn P A, Bowyer P, Denning D W. 2007. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology (Reading)153, 1677-1692.

Herzallah S, Alshawabkeh K, Fataftah A A. 2008. Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. Journal of Applied Poultry Research17, 515-521.

Kato S, Hayashi M, Kitagawa M, Kajiura H, Maeda M, Kimura Y, Igarashi K, Kasahara M, Ishimizu T. 2018. Degradation pathway of plant complex-typeN-glycans: Identification and characterization of a key α1,3-fucosidase from glycoside hydrolase family 29. The Biochemical Journal, 475, 305-317.

Kutschera A, Dawid C, Gisch N, Schmid C, Raasch L, Gerster T, Schäffer M, Smakowska-Luzan E, Belkhadir Y, Vlot A C, Chandler C E, Schellenberger R, Schwudke D, Ernst R K, Dorey S, Hückelhoven R, Hofmann T, Ranf S. 2019. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science, 364, 178-181.

Lee S, Choi E, Kim T, Hwang J, Lee J H. 2022. AtHAD1, a haloacid dehalogenase-like phosphatase, is involved in repressing the ABA response. Biochemical and Biophysical Research Communications, 587, 119-125.

Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J, Yan J. 2012. Genome-wide association studies identified three independent polymorphisms associated with a-tocopherol content in maize kernels. PloS ONE, 7, e36807.

Li T, Zhang Z, Wang Y, Li Y, Zhu J, Hu R, Yang Y, Liu M. 2021. Quantitative proteomic analysis for high- and low-aflatoxin-yield Aspergillus flavus strains isolated from natural environments. Frontiers in Microbiology, 12, 741875.

Li W, Yu Y, Wang L, Luo Y, Peng Y, Xu Y, Liu X, Wu S, Jian L, Xu J, Xiao Y, Yan J. 2021. The genetic architecture of the dynamic changes in grain moisture in maize. Plant Biotechnology Journal, 19, 1195-1205.

Liu H, Wang F, Xiao Y, Tian Z, Wen W, Zhang X, Chen X, Liu N, Li W, Liu L, Liu J, Yan J, Liu J. 2016. MODEM: Multi-omics data envelopment and mining in maize. Database (Oxford), 2016, baw117.

Liu Y, Wu F. 2010. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environmental Health Perspectives, 118, 818-824.

Loiselle B A, Sork V L, Nason J, Graham C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). American Journal of Botany, 82, 1420-1425.

Nazari M. 2021. Plant mucilage components and their functions in the rhizosphere. Rhizosphere, 18, 100344.

Mideros S X, Warburton M L, Jamann T M, Windham G L, Williams W P, Nelson R J. 2014. Quantitative trait loci influencing mycotoxin contamination of maize: Analysis by linkage mapping, characterization of near-isogenic lines, and meta-analysis. Crop Science, 54, 127–142.

Pozzo T, Higdon S M, Pattathil S, Hahn M G, Bennett A B. 2018. Characterization of novel glycosyl hydrolases discovered by cell wall glycan directed monoclonal antibody screening and metagenome analysis of maize aerial root mucilage. PLoS ONE, 13, e0204525.

Qu L L, Jia Q, Liu C, Wang W, Duan L, Yang G, Han C Q, Li H. 2018. Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. Journal of Chromatography A, 1579, 115-120.

Schmidt M A, Mao Y, Opoku J, Mehl H L. 2021. Enzymatic degradation is an effective means to reduce aflatoxin contamination in maize. BMC Biotechnology, 21, 70.

Shida T, Fukuda A, Saito T, Ito H, Kato A. 2015. AtRBP1, which encodes an RNA-binding protein containing RNA-recognition motifs, regulates root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 92, 62-70.

Shim W B, Yang Z Y, Kim J S, Kim J Y, Kang S J, Woo G J, Chung Y C, Eremin S A, Chung D H. 2007. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. Journal of Microbiology and Biotechnology, 17, 1629-1637.

Sözen C, Schenk S T, Boudsocq M, Chardin C, Almeida-Trapp M, Krapp A, Hirt H, Mithöfer A, Colcombet J. 2020. Wounding and insect feeding trigger two independent MAPK pathways with distinct regulation and kinetics. The Plant Cell, 32, 1988-2003. 

Ta K N, Yoshida M W, Tezuka T, Shimizu-Sato S, Nosaka-Takahashi M, Toyoda A, Suzuki T, Goshima G, Sato Y. 2023. Control of plant cell growth and proliferation by MO25a, a conserved major component of the mammalian Sterile 20-like kinase pathway. Plant & Cell Physiology, 64, 336-351.

Thakare D, Zhang J, Wing R A, Cotty P J, Schmidt M A. 2017. Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 3, e1602382.

de La Torre F, Sampedro J, Zarra I, Revilla G. 2002. AtFXG1, an Arabidopsis gene encoding α-L-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiology, 128, 247-255.

Tsai A Y, Kunieda T, Rogalski J, Foster L J, Ellis B E, Haughn G W. 2017. Identification and characterization of Arabidopsis seed coat mucilage proteins. Plant Physiology, 173, 1059-1074.

Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney T C, McElver J, Aux G, Patton D, Meinke D. 2004. Identification of genes required for embryo development in Arabidopsis. Plant Physiology, 135, 1206-1220.

Voiniciuc C, Engle K A, Günl M, Dieluweit S, Schmidt M H, Yang J Y, Moremen K W, Mohnen D, Usadel B. 2018. Identification of key enzymes for pectin synthesis in seed mucilage. Plant Physiology, 178, 1045-1064.

Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. 2016. Integration of omic networks in a developmental atlas of maize. Science, 353, 814-818.

Wang X, Gingrich D K, Deng Y, Hong Z. 2012. A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Molecular Biology of the Cell, 23, 1446-1456.

Willcox M C, Davis G L, Warburton M L, Windham G L, Abbas H K, Betrán J, Holland J B, Williams W P. 2013. Confirming quantitative trait loci for aflatoxin resistance from Mp313E in different genetic backgrounds. Molecular Breeding, 32, 15-26.

Xiang K, Zhang Z M, Reid L M, Zhu X Y, Yuan G S, Pan G T. 2010. A meta-analysis of QTL associated with ear rot resistance in maize. Maydica, 55, 281–290.

Yan J, Huang Y, He H, Han T, Di P, Sechet J, Fang L, Liang Y, Scheller H V, Mortimer J C, Ni L, Jiang M, Hou X, Zhang A. 2019. Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. Journal of Experimental Botany, 70, 5495-5506.

Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, Li W, Liu L, Jackson D, Yan J. 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51, 1052-1059.

Yang N, Xu X W, Wang R R, Peng W L, Cai L, Song J M, Li W, Luo X, Niu L, Wang Y, Jin M, Chen L, Luo J, Deng M, Wang L, Pan Q, Liu F, Jackson D, Yang X, Chen LL, Yan J. 2017. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications, 8, 1874.

Yang X, Gao S, Xu S, Zhang Z, Prasanna B M, Lin L, Li J, Yan J. 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 28, 511–526.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, proteomics & bioinformatics, 19, 619-628.

Yin Y N, Yan L Y, Jiang J H, Ma Z H. Biological control of aflatoxin contamination of crops. 2008. Journal of Zhejiang University - Science B, 9, 787-92.

Yu J, Hennessy DA, Wu F. 2024. Bt corn and cotton planting may benefit peanut growers by reducing aflatoxin risk. Plant Biotechnology Journal, 22, 3028–3036

Zhang X, Warburton M L, Setter T, Liu H, Xue Y, Yang N, Yan J, Xiao Y. 2016. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theoretical and Applied Genetics, 129, 1449-1463.

Zhao H, Sun Z, Wang J, Huang H, Kocher J P, Wang L. 2014. CrossMap: A versatile tool for coordinate conversion between genome assemblies. Bioinformatics, 30, 1006-1007.

Zhao Z, Fan J, Yang P, Wang Z, Opiyo S O, Mackey D, Xia Y. 2022. Involvement of Arabidopsis Acyl Carrier Protein 1 in PAMP-triggered immunity. Molecular Plant-Microbe Interactions, 35, 681-693.

Zhou C, Yin Y, Dam P, Xu Y. 2010. Identification of novel proteins involved in plant cell-wall synthesis based on protein-protein interaction data. Journal of Proteome Research, 9, 5025-5037.

No related articles found!
No Suggested Reading articles found!