Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genome-wide characterization of soybean lysophosphatidic acid acyltransferases and functional characterization of the role of GmLPAT11 in salt stress

Zhiyang Wang*, Peiyan Liu*, Haitong Sun, Wenying Suo, Ziqian Cheng, Mingliang Yang#, Qingshan Chen#, Ying Zhao#

National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030China 

 Highlights 

Under salt stress,GmLPAT11 enhances soybean salt tolerance through the regulation of antioxidant activity and redox status.

Two haplotypes of the GmLPAT11 gene were identified; the natural variation of GmLPAT11 is crucial for its function, with hap2 being a favorable haplotype for salt tolerance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

溶血磷脂酸酰基转移酶(LPAT)是一种广泛表达的酶,在植物的生长发育和胁迫响应中起着关键作用。然而,关于大豆基因组中的LPAT基因的信息却十分有限。通过全基因组分析,鉴定了15个大豆LPAT家族成员,并分析了保守蛋白基序的存在。根据其系统发育关系,将这些基因分为三个聚类。通过共聚焦显微镜在拟南芥叶肉原生质体上测定了6GmLPATs的胞内定位。顺式调节元件分析和实时定量聚合酶链反应(qRT-PCR)的结果显示,非生物胁迫(干旱、盐和碱度)和激素处理显著增加了GmLPATs的转录本。GmLPATs在不同的大豆组织中表现出独特的表达模式。我们发现,一个soiLPAT亚型GmLPAT11)在各个处理下的表达水平较高,这可能表明它在大豆对盐胁迫的响应中起了关键作用。GmLPAT11在大肠杆菌中的表达表明,重组酶具有LPAT活性。我们还发现过表达LPAT降低了转基因大豆活性氧(ROS)的形成,显著提高了抗盐胁迫性。基因关联分析表明,GmLPAT11的变异与幼苗的耐盐性密切相关。在GmLPAT11CDS区发现了一种可能与耐盐性相关的多态性。这些发现不仅提高了我们对LPAT基因家族的理解,还确定了大豆未来增强耐盐性的潜在候选基因。



Abstract  

Lysophosphatidic acid acyltransferases (LPATs) are enzymes widely expressed in various plant species, contributing to growth, development, and stress responses.  Currently, little information regarding the LPAT gene family is available in soybeans.  In this study, genome-wide analyses identified 15 soybean LPATs, which were then evaluated for the conserved protein motifs.  These genes were grouped into three clusters based on their phylogenetic relationships.  Confocal microscopy was used to visualize the localization of six GmLPATs within Arabidopsis mesophyll protoplasts.  cis-Acting regulatory element analyses and qRT-PCR experiments revealed that these GmLPATs were upregulated in response to hormone stimulation or exposure to abiotic stressors, including drought, alkaline conditions, and salt stress.  The expression patterns of these GmLPATs varied across different soybean tissue types.  One member of the solLPAT1 subtype (GmLPAT11) was found to be upregulated in response to a range of treatments, highlighting its role in soybean salt stress responses. GmLPAT11 expression in Escherichia coli confirmed the LPAT activity of this recombinant enzyme, and overexpressing this LPAT reduced reactive oxygen species production in transgenic soybean plants, enhancing their salt stress tolerance.  Gene association analyses indicated that GmLPAT11 variants are closely associated with seedling salt tolerance, and a polymorphism in the GmLPAT11 CDS region was potentially associated with salt tolerance.  These results provide new insight into the nature of the LPAT gene family in soybeans while also suggesting promising candidate genes for future research efforts aimed at enhancing the overall salt tolerance of soybean crops. 

Keywords:  soybean (Glycine max (L.) Merr.)       Lysophosphatidic acid acyltransferase       salt stress       expression pattern  
Online: 30 December 2024  
Fund: 

This study was financially supported by the Natural Science Foundation of Heilongjiang (TD2022C003 and YQ2022C010), the National Key R&D Program of China (2023ZD040360305) and the Natural Science Foundation of China ((U20A2027, U23A201783, 32272093, 32272072).

About author:  Zhiyang Wang, E-mail: wzy13613642168@163.com; Peiyan Liu, E-mail: liupeiyan823@163.com; #Correspondence Mingliang Yang, Tel: +86-451-55191945, E-mail: mlyang@neau.edu.cn; Qingshan Chen, Tel: +86-451-55191259, E-mail: qshchen@126.com; Ying Zhao, E-mail: tianshi198937@ 126.com *These authors contributed equally to this study.

Cite this article: 

Zhiyang Wang, Peiyan Liu, Haitong Sun, Wenying Suo, Ziqian Cheng, Mingliang Yang, Qingshan Chen, Ying Zhao. 2024. Genome-wide characterization of soybean lysophosphatidic acid acyltransferases and functional characterization of the role of GmLPAT11 in salt stress. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.031

Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. 2022. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research, 86, 101158.  

Angkawijaya A E, Nguyen V C, Nakamura Y. 2017. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2). Plant Cell Environment, 40, 1807-1818.

Arroyo-Caro J M, Chileh T, Kazachkov M, Zou J, Alonso D L, García-Maroto F. 2013. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: Cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Science, 199-200, 29-40.

Bargmann B O R, Laxalt A M, Riet B T, van Schooten B, Merquiol E, Testerink C, Haring M A, Bartels D, Munnik T. 2008. Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant and Cell Physiology, 50, 78-89.

Bourgis F, Kader J C, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe T J. 1999. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiology, 120, 913-922.

Brown A P, Coleman J, Tommey A M, Watson M D, Slabas A R. 1994. Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Molecular Biology, 26, 211-223.

Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611-622.

Chapman K D, Ohlrogge J B. 2012. Compartmentation of triacylglycerol accumulation in plants. Journal of Biological Chemistry, 287, 2288-2294.

Chen J, Zhang P, Zhao Y, Zhao J, Wu X, Zhang R, Cha R, Yao Q, Gao Y. 2022. Nitroreductase-instructed supramolecular assemblies for microbiome regulation to enhance colorectal cancer treatments. Science Advances, 8, eadd2789.

Chen S L, Huang J Q, Lei Y, Zhang Y T, Ren X P, Chen Y N, Jiang H F, Yan L Y, Li Y R, Liao B S. 2012. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. Journal of Bioscience and Bioengineering, 37, 1029-1039.

Chen X, Wang Y, Wang J N, Cao Q C, Sun R X, Zhu H J, Zhang Y R, Ji J D, Liu Q H. 2022. m(6)A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis. Cell Reports, 41, 111671.

Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. 2020. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. Plant Biotechnology Journal, 18, 2420-2435.

Dai H F Wu H, Amanguli Maimaiti Ali A, Wang L H, Apizi M, Zhang J S. 2014. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Scientia Agricultura Sinica, 47, 1290-1300. (in Chinese)

Fryer M J, Oxborough K, Mullineaux P M, Baker N R. 2002. Imaging of photo-oxidative stress responses in leaves. Journal of Experimental Botany, 53, 1249-1254.

Giannopolitis C N, Ries S K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.

Han R H, Lu X S, Gao G J, Yang X J. 2006. Analysis of the principal components and the subordinate function of alfalfa drought resistance. Acta Agrestia Sinica, 14, 142-146.

Hanke C, Wolter F P, Coleman J, Peterek G, Frentzen M. 1995. A plant acyltransferase involved in triacylglycerol biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant.European journal of biochemistry, 232, 806-810.

Hasegawa P M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92, 19-31.

Hong Y, Pan X, Welti R, Wang X. 2008. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. The Plant Cell, 20, 803-816.

Hong Y, Zhao J, Guo L, Kim S C, Deng X, Wang G, Zhang G, Li M, Wang X. 2016. Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 62, 55-74.

Hossain M S, Dietz K J. 2016. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science, 7, 548.

Kim H U, Huang A H C. 2004. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiology, 134, 1206-1216.

Kim H U, Li Y, Huang A H. 2005. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 17, 1073-1089.

Kim H U, Vijayan P, Carlsson A S, Barkan L, Browse J. 2010. A mutation in the LPAT1 gene suppresses the sensitivity of fab1 plants to low temperature. Plant Physiology, 153, 1135-1143.

Knutzon D S, Lardizabal K D, Nelsen J S, Bleibaum J L, Davies H M, Metz J G. 1995. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiology, 109, 999-1006.

Kolkman J A, Stemmer W P. 2001. Directed evolution of proteins by exon shuffling. Nature Biotechnology, 19, 423-428.

Lewin T M, Wang P, Coleman R A. 1999. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38, 5764-5771.

Liu M, Wu S, Walch H, Grigoriev A. 2005. Exon-domain correlation and its corollaries. Bioinformatics, 21, 3213-3216.

Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, Xue Y, Ren J. 2015. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31, 3359-3361.

Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. 2010. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiology, 152, 670-684.

Mishra G, Zhang W, Deng F, Zhao J, Wang X. 2006. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science, 312, 264-266.

Misra N, Panda P K, Parida B K. 2014. Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches. Molecular Biology Reports, 41, 8319-8332.

Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.

Ohlrogge J, Browse J. 1995. Lipid biosynthesis. The Plant Cell, 7, 957-970.

Pokotylo I, Kravets V, Martinec J, Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants.Progress in Lipid Research, 71, 43-53.

Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. 2015. Role of phospholipid signalling in plant environmental responses. Environmental and Experimental Botany, 114, 129-143.

Shaikh A A, Alamin A, Jia C, Gong W, Deng X, Shen Q, Hong Y. 2022. The examination of the role of rice lysophosphatidic acid acyltransferase 2 in response to salt and drought stresses. International Journal of Molecular Sciences, 23, 9796.

Sivakumar D, Sivaraman T. 2011. In silico designing and screening of lead compounds to NS5-methyltransferase of dengue viruses. Journal of Medicinal Chemistry, 7, 655-662.

Snyder C L, Yurchenko O P, Siloto R M, Chen X, Liu Q, Mietkiewska E, Weselake R J. 2009. Acyltransferase action in the modification of seed oil biosynthesis. Nature Biotechnology, 26, 11-16.

Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick T B. 2005. Vitamin B6 biosynthesis in higher plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 13687-13692.

Taylor D C, Francis T, Lozinsky S, Hoffman T L, Giblin M E, Marillia E F. 2010. Cloning and characterization of a Constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. The Open Plant Science Journal, 4, 7-17.

Tóth K, Batek J, Stacey G. 2016. Generation of soybean (Glycine max) transient transgenic roots. Current Protocols in Plant Biology, 1, 1-13.

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151, 59-66.  

Wang D, Yuan M, Zhuang Y, Xin X F, Qi G. 2024. DGK5-mediated phosphatidic acid homeostasis interplays with reactive oxygen species in plant immune signaling. Journal of Integrative Plant Biology, 66, 1263-1265.

Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. 2019. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. The Plant Cell, 31, 250-271.

Wang Q J, Sun H, Dong Q L, Sun T Y, Jin Z X, Hao Y J, Yao Y X. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal, 14, 1986-1997.

Wang X, Devaiah S P, Zhang W, Welti R. 2006. Signaling functions of phosphatidic acid. Progress in Lipid Research, 45, 250-278.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.

Yu C Y, Zhang H K, Wang N, Sun J, Dong Y X, Zhang X S, Gao X Q. 2021. Characterization of the ERP gene family in Arabidopsis thaliana. Plant Signaling and Behavior, 16, 1913301.

Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W. 2012. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. The Plant Cell, 24, 4555-4576.

Zhang R, Hussain S, Wang Y, Liu Y, Li Q, Chen Y, Wei H, Gao P, Dai Q. 2021. Comprehensive evaluation of salt tolerance in rice (Oryza sativa L.) germplasm at the germination stage. Agronomy, 11, 1569.

Zhang W, Qin C, Zhao J, Wang X. 2004. Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 101, 9508-9513.

Zhao Y, Cao P, Cui Y, Liu D, Li J, Zhao Y, Yang S, Zhang B, Zhou R, Sun M, Guo X, Yang M, Xin D, Zhang Z, Li X, Lv C, Liu C, Qi Z, Xu J, Wu X, Chen Q. 2021. Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD(+) -dependent glycerol-3-phosphate dehydrogenase in soybean. Journal of Integrative Plant Biology, 63, 1036-1053.

Zhou R, Wang S, Liu P, Cui Y, Hu Z, Liu C, Zhang Z, Yang M, Li X, Wu X, Chen Q, Zhao Y. 2024. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role of GmLPAT2 in salt stress response. Journal of Integrative Agriculture, doi: https://doi.org/10.1016/j.jia.2023.12.036 

No related articles found!
No Suggested Reading articles found!