Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Methyl salicylate reduces aphid abundance in maize through multiple modes of action

Yingyue Xu1, Xuanchen Zhou1, Bin Yan1, Yang Yue1, Min Zhang2, Haibin Yuan1#, Shuai Liu1# 

1 College of Plant Protection, Jilin Agricultural University, Changchun 130118, China

2 Monitoring and Testing Center for Ginseng and Antler ProductsMinistry of Agriculture and Rural AffairsJilin Agricultural UniversityChangchun 130118China

 Highlights 

l Methyl salicylate effectively deters both wingless and winged aphids by disrupting their ability to colonize and infest maize plants.

l Methyl salicylate can attract predatory natural enemies of aphids. 

l Exposure of maize to methyl salicylate reduces aphid numbers and impacts their development and fecundity.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米是全球重要的粮食作物。玉米蚜虫是危害玉米的重要害虫,随着Bt转基因抗虫玉米的逐步推广种植,玉米蚜虫可能由原来的次要害虫上升为主要害虫。因此,需要发展玉米蚜虫高效绿色的防治方法。有研究表明水杨酸甲酯作为常见的虫害诱导挥发物能够防控多种蚜虫,但是对玉米蚜虫是否具有控制作用还未可知。本研究利用“Y”型嗅觉仪和培养皿扩散实验探究了水杨酸甲酯对蚜虫的驱避作用,结果表明水杨酸甲酯在0.1 ng μL-1 -1000ng μL-1 的浓度下可以显著驱避禾谷缢管蚜有翅型和无翅型。利用Y”型嗅觉仪分析了水杨酸甲酯对蚜虫捕食性天敌异色瓢虫的行为影响,结果发现100 ng μL-1和1000 ng μL-1水杨酸甲酯可以显著吸引异色瓢虫的成虫和幼虫。此外,将玉米植株暴露在具有水杨酸甲酯的环境中,可以降低玉米植株上蚜虫的种群数量。利用昆虫微养虫笼分析水杨酸甲酯对蚜虫生存适合度的影响,结果发现水杨酸甲酯处理后蚜虫的若虫发育历期延长,成虫寿命和生殖期缩短,产仔量显著降低。田间实验本研究利用海藻酸钠缓释球包裹水杨酸甲酯释放到玉米田探究其对蚜虫和捕食性天敌种群数量的影响,连续2年田间调查结果发现水杨酸甲酯缓释球可以显著降低禾谷缢管蚜、玉米蚜和棉蚜的种群数量,但是可以提高天敌异色瓢虫、龟纹瓢虫、大灰优食蚜蝇和中华草蛉的种群数量。以上结果证明了水杨酸甲酯具有防控玉米田蚜虫的潜力,为蚜虫的绿色防治提供了新的方法。



Abstract  

Maize is a cornerstone of global food security, but it faces increasing challenges from corn aphids, particularly with the widespread adoption of genetically modified Bt maize. This trend suggests a growing need for sustainable pest control strategies. Methyl salicylate has been proposed as a volatile compound with the potential for managing aphids. In this study, Y-tube olfactometer and Petri dish dispersal assays showed that methyl salicylate can repel wingless and winged aphids at 0.1 to 1,000 ng μL-1. Moreover, at concentrations of 100 and 1,000 ng μL-1, it was found to attract beneficial insects such as adults and larvae of Harmonia axyridis. Exposing maize plants to methyl salicylate resulted in a prominent reduction in the number of aphids compared to the control. In addition, clip cage experiment assays showed that the nymphal development duration was increased, while the adult duration and generation time were reduced, and the reproductive duration and total number of aphid offspring in plants treated with methyl salicylate were dramatically lower than in the control. Over two years of field trials, methyl salicylate-impregnated alginate beads provided significant reductions in the populations of key aphid species, including Rhopalosiphum padi, Rhopalosiphum maidis, and Aphis gossypii. Concurrently, there were marked increases in the presence of natural predators such as H. axyridis, Propylaea japonica, Syrphus corollae, and Chrysoperla sinica. These compelling results underscore the potential of methyl salicylate as a key component in integrated pest management strategies for maize, offering a green alternative to traditional chemical control.

Keywords:  methyl salicylate       aphids              natural predators              pest control  
Online: 24 December 2024  
Fund: 

This study was supported by the National Natural Science Foundation of China (32202311), the Natural Science Foundation of Jilin Province, China (20230101265JC), the Jilin Province Youth Science and Technology Talent Support Project, China (QT202307), and the Jilin Province Science and Technology Development Plan Project, China (20220505019ZP).

About author:  Yingyue Xu, Mobile: +86-18943103536, E-mail: xyy020799@163.com; #Correspondence: Haibin Yuan, E-mail: yhb-74@163.com; Shuai Liu, Mobile: +86-18166896936, E-mail: liushuai0903@126.com

Cite this article: 

Yingyue Xu, Xuanchen Zhou, Bin Yan, Yang Yue, Min Zhang, Haibin Yuan, Shuai Liu. 2024. Methyl salicylate reduces aphid abundance in maize through multiple modes of action. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.027

Al-Fifi Z I A. 2009. Effect of different neem products on the mortality and fitness of adult Schistocerca gregaria (Forskål). Journal of King Abdulaziz University-Science21, 299-315.

Brewer M J, Goodell P B. 2012. Approaches and incentives to implement integrated pest management that addresses regional and environmental issues. Annual Review of Entomology57, 41-59.

Byers J A, Maoz Y, Cohen B, Golani M, Fefer D, Levi-Zada A. 2021. Protecting avocado trees from ambrosia beetles by repellents and mass trapping (push–pull): Experiments and simulations. Journal of Pest Science, 94, 991-1002.

Glinwood R T, Pettersson J. 2000. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata, 94, 325-330.

Gulzar A, Muhammad M, Muhammad T, Bodlah I, Tariq K, Ali A. 2019. Lethal and sublethal effects of Azadirachtin indica seed extract on the development of spotted bollworm Earias vittella (Fab.). Gesunde Pflanzen, 71, 19-24.

Hassanali A, Herren H, Khan Z R, Pickett J A, Woodcock C M. 2008. Integrated pest management: The push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions (Biological Sciences), 363, 611-621.

Heidel A J, Baldwin I T. 2004. Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell & Environment, 27,1362-1373.

Heil M, Ton J. 2008. Long-distance signalling in plant defence. Trends in Plant Science, 13, 264-272.

Helms A M, Moraes C M D, Mescher M C, Tooker J F. 2014. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biology, 14, 173.

James D G. 2003. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 29, 1601-1609.

James D G, Grasswitz T R. 2005. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. Biocontrol, 50, 871-880.

Khan Z R, James D G, Midega C A O, Pickett J A. 2008. Chemical ecology and conservation biological control. Biological Control, 45, 210-224.

Li F, Li W, Lin Y, Pickett J, Birkett M, Wu K, Wang G, Zhou J. 2018. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant Cell & Environment, 41, 111-120.

Liu J, Zhao X, Zhan Y, Wang K, Francis F, Liu Y. 2021. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest Management Science, 77, 3341-3348.

Mallinger R, Hogg D, Claudio G. 2011. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology, 104, 115-124.

Martini X, Pelz-Stelinski K, Stelinski L. 2014. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector. Frontiers in Ecology and Evolution, 2, 1-8.

Moraes C M D, Mescher M C, Tumlinson J H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature410, 577-580.

Myers S, Gratton C. 2006. Influence of potassium fertility on soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), population dynamics at a field and regional scale. Environmental Entomology, 35, 219-227.

Ninkovic V, Ahmed E, Glinwood R, Pettersson J. 2003. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agricultural and Forest Entomology5, 27-34.

Ninkovic V, Glinwood R, Ünlü A, Ganji S, Unelius C. 2021. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Frontiers in Plant Science, 12, 710268.

Orre Gordon G, Wratten S, Jonsson M, Simpson M, Hale R. 2013. ‘Attract and reward’: Combining a herbivore-induced plant volatile with floral resource supplementation – Multi-trophic level effects. Biological Control, 64, 106-115.

Park S, Kaimoyo E, Kumar D, Mosher S, Klessig D. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science318, 113-116.

Pettersson J, Pickett J, Pye B, Quiroz A, Smart L, Wadhams L, Woodcock C. 1994. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (homoptera, aphididae), and other aphids in cereal fields. Journal of Chemical Ecology20, 2565-2574.

Pettersson J, Tjallingii W F, Hardie J. 2007. Host-plant selection and feeding. In: van Emden H F, Harrington R, eds., Aphids as Crop Pests, CAB International, Wallingford. pp. 87-113.

Pons X, Lumbierres B, Lopez C, Albajes R. 2005. Abundance of non-target pests in transgenic Bt-maize: A farm scale study. European Journal of Entomology, 102, 73-79.

Rachel E, Hogg D, Gratton C. 2011. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology, 104,115-124.

Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L. 2011. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biological Control, 59, 294-303.

Shulaev V, Silverman P, Raskin I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718-721.

Smith C, Boyko E. 2010. The molecular bases of plant resistance and defense responses to aphid feeding: Current status. Entomologia Experimentalis et Applicata, 122, 1-16.

Takabayashi J, Dicke M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science, 1, 109-113.

Tian W, Liu X Y, Cheng J, Zhao M C, Zhang Y, Yuan H B. 2024. Investigation on the occurrence of main pests and natural enemies in plastic film drip irrigation maize field and full maize straw returning with deep ploughing mode. Journal of Jilin Agricultural University, 46, 850-857. (in Chinese)

Turlings T, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 63, 433-452.

Turlings T, Ton J. 2006. Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Current Opinion in Plant Biology, 9, 421-427.

Van D, Wondafrash M, Mathur V, Tytgat T. 2018. Differences in hormonal signaling triggered by two root-feeding nematode species result in contrasting effects on aphid population growth. Frontiers in Ecology and Evolution, 6, 88.

Vlot A, Klessig D, Park S. 2008. Systemic acquired resistance: The elusive signal(s). Current Opinion in Plant Biology11, 436-442.

Wang K, Liu J, Zhan Y, Liu Y. 2019. A new slow-release formulation of methyl salicylate optimizes the alternative control of Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in wheat fields. Pest Management Science, 75, 676-682.

Wei X, Ali T, Cui Q, Huang J. 2017. Economic impacts of commercializing insect-resistant GM maize in China. China Agricultural Economic Review, 9, 340-354.

Xu Q, Hatt S, Lopes T, Zhang Y, Bodson B, Chen J, Francis F. 2018. A push–pull strategy to control aphids combines intercropping with semiochemical releases. Journal of Pest Science91, 93-103.

Xu T, Xu M, Lu Y, Zhang W, Sun J, Zeng R, Turlings T, Chen L. 2021. A trail pheromone mediates the mutualism between ants and aphids. Current Biology31, 4738-4747.

Yu H L, Zhang Y J, Wu K M, Gao X W, Guo Y Y. 2008. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environmental Entomology, 37, 1410-1415. 

Zhang R, Wang B, Grossi G, Falabella P, Liu Y, Yan S, Lu J, Xi J, Wang G. 2017. Molecular basis of alarm pheromone detection in aphids. Current Biology27, 55-61.

Zhang Y, Zhan M, Cheng J, Liu S, Yuan H. 2020. Population dynamics and species composition of maize field parasitoids attacking aphids in northeastern China. PLoS ONE, 15, e0241530.

Zhu J, Park K. 2005. Methyl Salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology, 31, 1733-1746.

No related articles found!
No Suggested Reading articles found!