Basse C W, Farfsing J W. 2006. Promoters and their regulation in Ustilago maydis and other phytopathogenic fungi. FEMS Microbiology Letters, 254, 208-16.
Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101-6.
Berman J, Krysan D J. 2020. Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 18, 319-331.
Bolton M D, Thomma B P, Nelson B D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1-16.
Buer C S, Imin N, Djordjevic M A. 2010. Flavonoids: new roles for old molecules. Journal of Integrative Plant Biology, 52, 98-111.
Carvajal E, van den Hazel H B, Cybularz-Kolaczkowska A, Balzi E, Goffeau A. 1997. Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Molecular & General Genetics, 256, 406-15.
Chaudhary P M, Tupe S G, Deshpande M V. 2013. Chitin synthase inhibitors as antifungal agents. Mini Reviews in Medicinal Chemistry, 13, 222-36.
Chen J, Ullah C, Reichelt M, Beran F, Yang Z L, Gershenzon J, Hammerbacher A, Vassão D G. 2020. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nature Communications, 11, 3090.
Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A. 2019. Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiology, 180, 1975-1987.
Copier C, Osorio-Navarro C, Maldonado J E, Auger J, Silva H, Esterio M. 2024. A conservative mutant version of the Mrr1 transcription factor correlates with reduced sensitivity to fludioxonil in Botrytis cinerea. Pathogens, 13, 374.
Drew D, North R A, Nagarathinam K, Tanabe M. 2021. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chemical Reviews, 121, 5289-5335.
Evans T, Reitman M, Felsenfeld G. 1988. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proceedings of the National Academy of Sciences of the United States of America, 85, 5976-80.
Fisher M C, Hawkins N J, Sanglard D, Gurr S J. 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360, 739-742.
Flórez L V, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, Rodrigues A, Hertweck C, Kaltenpoth M. 2017. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nature Communications, 8, 15172.
Fones H N, Bebber D P, Chaloner T M, Kay W T, Steinberg G, Gurr S J. 2020. Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 1, 332-342.
Gao C, Wang L, Milgrom E, Shen W C. 2004. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. The Journal of Biological Chemistry, 279, 42677-86.
Gong Y, Fu Y, Xie J, Li B, Chen T, Lin Y, Chen W, Jiang D, Cheng J. 2022. Sclerotinia sclerotiorum SsCut1 modulates virulence and cutinase activity. Journal of Fungi, 8, 526.
Gulshan K, Moye-Rowley W S. 2007. Multidrug resistance in fungi. Eukaryotic Cell, 6, 1933-42.
Hashemian S M, Farhadi T, Velayati A A. 2020. Caspofungin: a review of its characteristics, activity, and use in intensive care units. Expert Review of Anti-Infective Therapy, 18, 1213-1220.
Hayashi K, Schoonbeek H J, De Waard M A. 2002. Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Applied and Environmental Microbiology, 68, 4996-5004.
Jiao W, Yu H, Chen X, Xiao K, Jia D, Wang F, Zhang Y, Pan H. 2022. The SsAtg1 activating autophagy is required for sclerotia formation and pathogenicity in Sclerotinia sclerotiorum. Journal of Fungi, 8, 1314.
Jørgensen L N, Heick T M. 2021. Azole use in agriculture, horticulture, and wood preservation - is it indispensable? Frontiers in Cellular and Infection Microbiology, 11, 730297.
Kretschmer M, Leroch M, Mosbach A, Walker A S, Fillinger S, Mernke D, Schoonbeek H J, Pradier J M, Leroux P, De-Waard M A, Hahn M. 2009. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathogens, 5, e1000696.
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. 2018a. Sssfh1, a gene encoding a putative component of the RSC chromatin remodeling complex, is involved in hyphal growth, reactive oxygen species accumulation, and pathogenicity in Sclerotinia sclerotiorum. Frontiers in Microbiology, 9, 1828.
Liu L, Wang Q, Zhang X, Liu J, Zhang Y, Pan H. 2018b. Ssams2, a gene encoding GATA transcription factor, is required for appressoria formation and chromosome segregation in Sclerotinia sclerotiorum. Frontiers in Microbiology, 9, 3031.
Liu Z, Myers L C. 2017a. Candida albicans Swi/Snf and mediator complexes differentially regulate Mrr1-induced MDR1 expression and fluconazole resistance. Antimicrobial Agents and Chemotherapy, 61, e01344-17.
Liu Z, Myers L C. 2017b. Mediator tail module is required for Tac1-activated CDR1 expression and azole resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 61, e01342-17.
Li J, Mu W, Veluchamy S, Liu Y, Zhang Y, Pan H, Rollins J A. 2018. The GATA-type
IVb zinc-finger transcription factor SsNsd1 regulates asexual-sexual development and appressoria formation in Sclerotinia sclerotiorum. Molecular Plant Pathology, 19, 1679-1689.
Lohberger A, Coste A T, Sanglard D. 2014. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryotic Cell, 13, 127-42.
Macios M, Caddick M X, Weglenski P, Scazzocchio C, Dzikowska A. 2012. The GATA factors AREA and AREB together with the co-repressor NMRA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source. Fungal Genetics and Biology, 49, 189-98.
MacPherson S, Larochelle M, Turcotte B. 2006. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiology and Molecular Biology Reviews, 70, 583-604.
Marroquin-Guzman M, Wilson R A. 2015. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathogens, 11, e1004851.
Meng F, Wang Z, Luo M, Wei W, Yin L, Yin W, Schnabel G, Luo C. 2023. The velvet family proteins mediate low resistance to isoprothiolane in Magnaporthe oryzae. PLoS Pathogens, 19, e1011011.
Mota-Fernandes C, Del-Poeta M. 2020. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Review of Anti-Infective Therapy, 18, 1083-1092.
Odds F C, Brown A J, Gow N A. 2003. Antifungal agents: mechanisms of action. Trends in Microbiology, 11, 272-9.
Osset-Trénor P, Pascual-Ahuir A, Proft M. 2023. Fungal drug response and antimicrobial resistance. Journal of Fungi, 9, 565.
Ren Q, Chen K, Paulsen I T. 2007. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Research, 35, D274-9.
Rollins J A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions, 16, 785-95.
Rybak J M, Muñoz J F, Barker K S, Parker J E, Esquivel B D, Berkow E L, Lockhart S R, Gade L, Palmer G E, White T C, Kelly S L, Cuomo C A, Rogers P D. 2020. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio, 11, e00365-20.
Sastré-Velásquez L E, Dallemulle A, Kühbacher A, Baldin C, Alcazar-Fuoli L, Niedrig A, Müller C, Gsaller F. 2022. The fungal expel of 5-fluorocytosine derived fluoropyrimidines mitigates its antifungal activity and generates a cytotoxic environment. PLoS Pathogens, 18, e1011066.
Scazzocchio C. 2000. The fungal GATA factors. Current Opinion in Microbiology, 3, 126-31.
Schuster M, Kilaru S, Steinberg G. 2024. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nature Communications, 15, 4357.
Seifbarghi S, Borhan M H, Wei Y, Coutu C, Robinson S J, Hegedus D D. 2017. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics, 18, 266.
Shang Q, Jiang D, Xie J, Cheng J, Xiao X. 2024. The schizotrophic lifestyle of Sclerotinia sclerotiorum. Molecular Plant Pathology, 25, e13423.
Sipos G, Kuchler K. 2006. Fungal ATP-binding cassette (ABC) transporters in drug
resistance & detoxification. Current Drug Targets, 7, 471-81.
Stefanato F L, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet C G, Métraux J P, Schoonbeek H J. 2009. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. The Plant Journal, 58, 499-510.
Steinberg G, Gurr S J. 2020. Fungi, fungicide discovery and global food security. Fungal Genetics and Biology, 144, 103476.
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich R A, Kema G H J, Bieri S, Sierotzki H, Torriani S F F, Scalliet G. 2019. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathogens, 15, e1007780.
Sun C B, Suresh A, Deng Y Z, Naqvi N I. 2006. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. The Plant Cell, 18, 3686-705.
Sun J, Zhao J, Liu M, Li J, Cheng J, Li W, Yuan M, Xiao S, Xue C. 2024. SreC-dependent adaption to host iron environments regulates the transition of trophic stages and developmental processes of Curvularia lunata. Molecular Plant Pathology, 25, e13444.
Thakur J K, Arthanari H, Yang F, Pan S J, Fan X, Breger J, Frueh D P, Gulshan K, Li D K, Mylonakis E, Struhl K, Moye-Rowley W S, Cormack B P, Wagner G, Näär A M. 2008. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452, 604-9.
Vanacloig-Pedros E, Lozano-Pérez C, Alarcón B, Pascual-Ahuir A, Proft M. 2019. Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. The Journal of Biological Chemistry, 294, 12933-12946.
Vermeulen T, Schoonbeek H, De-Waard M A. 2001. The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pest Management Science, 57, 393-402.
Vermitsky J P, Edlind T D. 2004. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrobial Agents and Chemotherapy, 48, 3773-81.
Víglaš J, Olejníková P. 2021. An update on ABC transporters of filamentous fungi - from physiological substrates to xenobiotics. Microbiological Research, 246, 126684.
de Waard M A, Andrade A C, Hayashi K, Schoonbeek H J, Stergiopoulos I, Zwiers L H. 2006. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Management Science, 62, 195-207.
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet K A, Vandemark G, Chen W. 2022. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nature Communications, 13, 2213.
Westrick N M, Ranjan A, Jain S, Grau C R, Smith D L, Kabbage M. 2019. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis. BMC Genomics, 20, 157.
Wu Z, Bi Y, Zhang J, Gao T, Li X, Hao J, Li G, Liu P, Liu X. 2024. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. mBio, 15, e0223723.
Xiao K, Liu L, He R, Rollins J A, Li A, Zhang G, He X, Wang R, Liu J, Zhang X, Zhang Y, Pan H. 2024. The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum. The New Phytologist, 241, 1794-1812.
Xu T, Wang Y T, Liang W S, Yao F, Li Y H, Li D R, Wang H, Wang Z Y. 2013. Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone. Journal of Microbiology, 51, 352-8.
Yang C, Li W, Huang X, Tang X, Qin L, Liu Y, Xia Y, Peng Z, Xia S. 2022. SsNEP2 contributes to the virulence of Sclerotinia sclerotiorum. Pathogens, 11, 446.
|