Abdellaoui A, Yengo L, Verweij K J H, Visscher P M. 2023. 15 years of GWAS discovery: Realizing the promise. The American Journal of Human Genetics, 110, 179–194.
Han J, van Hylckama Vlieg A, Rosendaal F R. 2023. Genomic science of risk prediction for venous thromboembolic disease: convenient clarification or compounding complexity. Journal of Thrombosis and Haemostasis, 21, 3292–3303.
Teng J, Ye S, Gao N, Chen Z, Diao S, Li X, Yuan X, Zhang H, Li J, Zhang X, Zhang Z. 2022. Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data. Journal of Integrative Agriculture, 21, 1126–1136.
Wang Z, Li W, Tang Z. 2024. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models1. Journal of Integrative Agriculture,.
Desta Z A, Ortiz R. 2014. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science, 19, 592–601.
Liu P, Ma L, Jian S, He Y, Yuan G, Ge F, Chen Z, Zou C, Pan G, Lübberstedt T, Shen Y. 2024. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize. Journal of Integrative Agriculture, 23, 2178–2195.
Cai Z, Christensen O F, Lund M S, Ostersen T, Sahana G. 2022. Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics, 23, 133.
Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden P M, Cole J B, Liu G E, Ma L. 2019. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Communications Biology, 2, 100.
Sun Y, Li Y, Zhao C, Teng J, Wang Y, Wang T, Shi X, Liu Z, Li H, Wang J, Wang W, Ning C, Wang C, Zhang Q. 2023. Genome-wide association study for numbers of vertebrae in Dezhou donkey population reveals new candidate genes. Journal of Integrative Agriculture, 22, 3159–3169.
Zhang Z, Xing S, Qiu A, Zhang N, Wang W, Qian C, Zhang J, Wang C, Zhang Q, Ding X. 2023. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application1. Journal of Integrative Agriculture,.
Li Y, Bai X, Liu X, Wang W, Li Z, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. 2022. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population. Journal of Integrative Agriculture, 21, 2065–2075.
Li N, Stephens M. 2003. Modeling Linkage Disequilibrium and Identifying Recombination Hotspots Using Single-Nucleotide Polymorphism Data. Genetics, 165, 2213–2233.
Chen J, Shi X. 2019. Sparse Convolutional Denoising Autoencoders for Genotype Imputation. Genes, 10, 652.
Song M, Greenbaum J, Luttrell J I, Zhou W, Wu C, Luo Z, Qiu C, Zhao L J, Su K-J, Tian Q, Shen H, Hong H, Gong P, Shi X, Deng H-W, Zhang C. 2022. An autoencoder-based deep learning method for genotype imputation. Frontiers in Artificial Intelligence, 5,.
Kojima K, Tadaka S, Katsuoka F, Tamiya G, Yamamoto M, Kinoshita K. 2020. A genotype imputation method for de-identified haplotype reference information by using recurrent neural network. PLOS Computational Biology, 16, e1008207.
De Marino A, Mahmoud A A, Bose M, Bircan K O, Terpolovsky A, Bamunusinghe V, Bohn S, Khan U, Novkovic B, Yazdi P G. 2022. A comparative analysis of current phasing and imputation software. PLOS One, 17, e0260177.
Naito T, Okada Y. 2024. Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology. Journal of Human Genetics, 1–6.
Ye S, Yuan X, Huang S, Zhang H, Chen Z, Li J, Zhang X, Zhang Z. 2019. Comparison of genotype imputation strategies using a combined reference panel for chicken population. Animal, 13, 1119–1126.
Zhang K, Peng X, Zhang S, Zhan H, Lu J, Xie S, Zhao S, Li X, Ma Y. 2022. A comprehensive evaluation of factors affecting the accuracy of pig genotype imputation using a single or multi-breed reference population. Journal of Integrative Agriculture, 21, 486–495.
Das S, Forer L, Schönherr S, Sidore C, Locke A E, Kwong A, Vrieze S I, Chew E Y, Levy S, McGue M, Schlessinger D, Stambolian D, Loh P-R, Iacono W G, Swaroop A, Scott L J, Cucca F, Kronenberg F, Boehnke M, Abecasis G R, et al. 2016. Next-generation genotype imputation service and methods. Nature Genetics, 48, 1284–1287.
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood A R, Teumer A, Kang H M, Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen S, Vrieze S, Scott L J, Zhang H, Mahajan A, Veldink J, et al. 2016. A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48, 1279–1283.
Zhang K, Liang J, Fu Y, Chu J, Fu L, Wang Y, Li W, Zhou Y, Li J, Yin X, Wang H, Liu X, Mou C, Wang C, Wang H, Dong X, Yan D, Yu M, Zhao S, Li X, et al. 2024. AGIDB: a versatile database for genotype imputation and variant decoding across species. Nucleic Acids Research, 52, D835–D849.
Teng J, Zhao C H, Wang D, Chen Z, Tang H, Li J B, Mei C, Yang Z P, Ning C, Zhang Q. 2022. Assessment of the performance of different imputation methods for low-coverage sequencing in Holstein cattle. Journal of Dairy Science, 105, 3355–3366.
Ye S, Zhou X, Lai Z, Ikhwanuddin M, Ma H. 2024. Systematic comparison of genotype imputation strategies in aquaculture: A case study in Nile tilapia (Oreochromis niloticus) populations. Aquaculture, 592, 741175.
Teng J, Gao Y, Yin H, Bai Z, Liu S, Zeng H, Bai L, Cai Z, Zhao B, Li X, Xu Z, Lin Q, Pan Z, Yang W, Yu X, Guan D, Hou Y, Keel B N, Rohrer G A, Lindholm-Perry A K, et al. 2024. A compendium of genetic regulatory effects across pig tissues. Nature Genetics, 56, 112–123.
Druet T, Macleod I M, Hayes B J. 2014. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity, 112, 39–47.
Yang J A, Lee S H, Goddard M E, Visscher P M. 2011. GCTA: A Tool for Genome-wide Complex Trait Analysis. American Journal of Human Genetics, 88, 76–82.
Scheet P, Stephens M. 2006. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. The American Journal of Human Genetics, 78, 629–644.
Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype Imputation. Annual Review of Genomics and Human Genetics, 10, 387–406.
Servin B, Stephens M. 2007. Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits. PLOS Genetics, 3, e114.
Durbin R. 2014. Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT). Bioinformatics, 30, 1266–1272.
Loh P-R, Danecek P, Palamara P F, Fuchsberger C, A Reshef Y, K Finucane H, Schoenherr S, Forer L, McCarthy S, Abecasis G R, Durbin R, L Price A. 2016. Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics, 48, 1443–1448.
Rubinacci S, Delaneau O, Marchini J. 2020. Genotype imputation using the Positional Burrows Wheeler Transform. PLOS Genetics, 16, e1009049.
Delaneau O, Zagury J-F, Robinson M R, Marchini J L, Dermitzakis E T. 2019. Accurate, scalable and integrative haplotype estimation. Nature Communications, 10, 5436.
Browning B L, Tian X, Zhou Y, Browning S R. 2021. Fast two-stage phasing of large-scale sequence data. The American Journal of Human Genetics, 108, 1880–1890.
Browning B L, Zhou Y, Browning S R. 2018. A One-Penny Imputed Genome from Next-Generation Reference Panels. The American Journal of Human Genetics, 103, 338–348.
Lin P, Hartz S M, Zhang Z H, Saccone S F, Wang J, Tischfield J A, Edenberg H J, Kramer J R, Goate A M, Bierut L J, Rice J P, COGA C C C, GENEVA. 2010. A New Statistic to Evaluate Imputation Reliability. PLOS One, 5, e9697.
Ding R, Savegnago R, Liu J, Long N, Tan C, Cai G, Zhuang Z, Wu J, Yang M, Qiu Y, Ruan D, Quan J, Zheng E, Yang H, Li Z, Tan S, Bedhane M, Schnabel R, Steibel J, Gondro C, et al. 2023. The SWine IMputation (SWIM) haplotype reference panel enables nucleotide resolution genetic mapping in pigs. Communications Biology, 6, 577.
Browning B L, Browning S R. 2016. Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98, 116–126.
Rubinacci S, Ribeiro D M, Hofmeister R J, Delaneau O. 2021. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nature Genetics, 53, 120–126.
|