Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The occurrence and genetic diversity of vegetable root-knot nematodes in Xinjiang Uyghur Autonomous Region

Junhui Zhou1*, Yuxuan Zhao2, 3*, Wenfang Luo1*, Hudie Shao4, Wei He1, Deliang Peng2, Wenkun Huang2, Huiqin Wang6, Honghai Zhao3, Jianjun Xu1#, Huan Peng1, 2#

1 Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Urumqi 830091, China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China 

3 Key Lab of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdao 266109, China

4 College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.

5 Agricultural Technology Extension Station of Xinjiang Uygur Autonomous egionUrumqi 830000 China

6 Xinjiang Plant Protection Station, Urumqi, Xinjiang, 830000, China

 Highlights 

The investigation was carried out to explore the occurrence, distribution, and genetic variation of root-knot nematodes (RKNs) infecting vegetables in Xinjiang.

The infected vegetable roots were found to harbor Meloidogyne incognita and M. hapla, with M. incognita being the most prevalent species.

Genetic diversity analysis indicated that the gene flow of M. incognita in Xinjiang originates primarily from nematode populations in southeastern provinces 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

根结线虫(RKNs)是造成全球经济损失最严重的植物寄生性线虫。新疆占中国陆地面积的六分之一,目前缺乏新疆蔬菜根结线虫发生、分布和遗传多样性的综合数据。因此,明确新疆根结线虫种类及其遗传多样性对制定全面的防控策略至关重要。在2021年至2023年期间,我们对新疆14地州86个县收集了130个样本进行了研究,旨在全面了解新疆蔬菜根结线虫的发生、分布、危害及其种类。通过形态学和分子生物学手段对新疆根结线虫的种类及其遗传多样性进行了研究。结果表明,在新疆哈密、吐鲁番、伊犁、巴州、和田、阿克苏、喀什和克州等地采集到的130个样本中检测57样本被根结线虫侵染,研究表明新疆蔬菜产区的根结线虫病害正在扩展。新疆蔬菜根结线虫的种类为南方根结线虫(Meloidogyne incognita)和北方根结线虫(M. hapla),其中南方根结线虫为优势种群。对南方根结线虫的COI区域进行系统发育分析,结果表明,中国新疆与中国东南部RKN种群之间存在显著进化和遗传差异。基于COI基因单倍型分析表明,南方根结线虫种群可划分为三大主要谱系:亚洲、欧美和非洲。我们研究发现南方根结线虫种群有显著的基因流发生其中从欧洲和美国向亚洲尤其是从中国东南部向新疆进行了漂移。我们研究结果表明,根结线虫对新疆蔬菜危害在持续加剧,实施有效的防控措施对缓解根结线虫的扩散至关重要。



Abstract  

Root-knot nematodes (RKNs) are the most economically damaging plant-parasitic nematodes globally. Xinjiang, encompassing one-sixth of China's landmass, currently lacks comprehensive data regarding the occurrence, distribution, and genetic variation of RKNs infecting vegetables within its borders. Hence, identifying RKNs species and genetic diversity is crucial for devising comprehensive management strategies. Between 2021 and 2023, We present a survey of 130 samples, collected from 86 counties across 14 cities in Xinjiang, aiming to comprehensively understand the occurrence, distribution, damage, and species of vegetable RKNs. The results indicated that 57 out of 130 samples collected from the cities of Hami, Tulufan, Ili, Bayingol, Hotan, Aksu, Kashgar, and Kizilsu in Xinjiang were infected by RKNs, suggesting an expansion of RKN disease in the vegetable-producing regions of Xinjiang. The infected vegetable roots were found to harbor Meloidogyne incognita and M. hapla, with M. incognita being the most prevalent species. A phylogenetic analysis targeting the COI regions of M. incognita revealed significant evolutionary and genetic disparities between Xinjiang and Southeastern China RKN populations. Haplotype analysis of the COI gene revealed that M. incognita populations are categorized into three major lineages: Asia, Europe, and a combined lineage encompassing both America and Africa. Notable gene flow patterns were observed among M. incognita populations, with significant migrations from Europe and America to Asia, specifically from Southeastern China towards Xinjiang. This study's findings indicate a consistent increase in the detrimental effects of vegetables production caused by RKNs in Xinjiang. Implementing effective prevention and control measures is crucial to mitigate the spread of RKNs.

Keywords:  Root-knot nematode      Vegetables      Occurrence      Genetic diversity      Xinjiang  
Online: 10 December 2024  
Fund: 

This work was supported by the Open Fund of the Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture (KFJJ202102), the Major Science and Technology Projects in Xinjiang Uygur Autonomous Region (2022A02005-3), the Tianchi Talent Introduction Program in Xinjiang Uygur Autonomous Region, the "Group Team" Aid Xinjiang Project of Xinjiang Uyghur Autonomous Region and the Science and the Technology Innovation Project of the Chinese Academy of Agricultural Sciences.

About author:  * Junhui ZHOU, E-mail: junhuiqzhou@163.com; Yuxuan ZHAO, E-mail: zhaoyuxuan0323@163.com; Wenfang LUO, E-mail: lf576263465@163.com; #Correspondence Huan PENG, Tel: +86-10-62815576 , E-mail: penghuan@caas.cn; Jianjun XU, Tel: +86-013999989115, E-mail: Xjj72@163.com

Cite this article: 

Junhui Zhou, Yuxuan Zhao, Wenfang Luo, Hudie Shao, Wei He, Deliang Peng, Wenkun Huang, Huiqin Wang, Honghai Zhao, Jianjun Xu, Huan Peng. 2024. The occurrence and genetic diversity of vegetable root-knot nematodes in Xinjiang Uyghur Autonomous Region. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.008

Abad P, Gouzy J, Aury J M, Castagnone-Sereno P, Danchin E G J, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V C, Caillaud M C, Coutinho P M, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone J V, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier T R, Markov G V, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum T J, Blaxter M, Bleve-Zacheo T, Davis E L, Ewbank J J, Favery B, Grenier E, Henrissat B, Jones J T, Laudet V, Maule AG, Quesneville H, Rosso M N, Schiex T, Smant G, Weissenbach J, Wincker P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology26, 909-915.

Álvarez-Ortega S, Brito J A, Subbotin S A. 2019. Multigene phylogeny of root-knot nematodes and molecular characterization of Meloidogyne nataliei Golden, Rose & Bird, 1981 (Nematoda: Tylenchida). Scientific reports, 9, 11788.

Azlay L, Boukhari M E M, Mayad E H, Barakate M. 2023. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agriculture, 13, 99-117.

Baidoo R, Joseph S, Mengistu T M, Brito J A, McSorley R, Stamps R H, Crow W T. 2017. Mitochondrial haplotype-based identification of root-knot nematodes (spp.) on cut foliage crops in Florida. Journal of Nematology, 48, 193-202.

Bandelt H J, Forster P A R. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.

Beerli P. 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics, 22, 341-345.

Braun-Kiewnick A, Viaene N, Folcher L, Ollivier F, Anthoine G, Niere B, Kiewnick S. 2016. Assessment of a new qPCR tool for the detection and identification of the root-knot nematode Meloidogyne enterolobii by an international test performance study. European Journal of Plant Pathology, 144, 97-108.

Brito J A, Subbotin S A, Desaeger J, Achinelly F, Qiu S. 2018. First report of the root-knot nematode (Meloidogyne javanica) infecting hops (Humulus lupulus) in Florida, USA. Journal of Nematology, 50, 1-2.

Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T. 2010. Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE, 5, e13716.

Desaeger J A, Watson T T. 2019. Evaluation of new chemical and biological nematicides for tomato production and associated double-crops in Florida. Pest Management Science, 75, 3363-3370.

Du L Y, Ayxer A B D L, Gao Y X. 2009. Prevention and control technology of cucumber root-knot nematode disease in Hami, Xinjiang. Jilin Vegetables, 2, 43. (in Chinese)

Eisenback J D, Sasser J, Carter C. 1985. Diagnostic characters useful in the identification of the four most common species of root-knot nematodes (Meloidogyne spp.). An Advanced Treatise Meloidogyne, 1, 95-112.

Elling A A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology, 103, 1092-1102.

El-Sagheer A. 2021. Molecular identification of Meloidogyne javanica occurring in Upper Egypt based polymerase chain reaction (PCR) assays. Egyptian Journal of Agronematology, 20, 120-127.

Feng G, Dong L, Chen Y, Shang H, Liu Y, Li J, Yang P. 2008. PCR detection of nematode isolated from Panax notoginseng. Southwest China Journal of Agricultural Sciences, 21, 100-102. (in Chinese)

Forge T A, Macguidwin A E. 1990. Cold Hardening of Meloidogyne hapla Second-stage Juveniles. Journal of Nematology, 22, 101-105.

Galtier N, Nabholz B, Glémin S, Hurst G D D. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular ecology, 18, 4541-4550.

Ghaderi R, Karssen G. 2020. An updated checklist of Meloidogyne Göldi, 1887 species, with a diagnostic compendium for second-stage juveniles and males. Journal of Crop Protection, 9, 183-193. 

Golden A M, 1990. Preparation and mounting nematodes for microscopic observation. In: Amherst, M.A. (Ed.), Plant Nematology Laboratory Manual. University of Massachusetts Agricultural Experiment Station, pp. 197-205.

Hartman K M, Sasser J N. 1985. Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. An Advanced Treatise on Meloidogyne, 2, 69-77.

Hooper D J. 1986. Extraction of free-living stages from soil, 5-30. In: Southey, J.F. (Ed.), Laboratory Methods for Work with Plant and Soil Nematodes. Her Majesty’s Stationery Office, London.

Janssen T, Karssen G, Verhaeven M, Coyne D, Bert W. 2016. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific reports, 6, 22591.

Jin N, Chen Y P, Liu Q, Jian H. 2022. Research progresses in occurrence, diagnoses, pathogenic mechanisms and integrated management of vegetable root-knot nematodes in China. Journal of Plant Protection, 49, 424-438. (in Chinese)

Jones J T, Haegeman A, Danchin E G, Gaur H S, Helder J, Jones M G, Perry R N. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946-961.

Katoh K, Standley D M. 2013. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.

Kalyaanamoorthy S, Minh B Q, Wong T K F, Von Haeseler A, Jermiin L S. 2017. Model Finder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-596.

Khan A, Ali A, Fatima S, Siddiqui M A. 2023. Root-knot nematodes (Meloidogyne spp.): Biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen, 75, 2187-2205.

Kim E, Seo Y, Kim Y S, Park Y, Kim Y H. 2017. Effects of soil textures on infectivity of root-knot nematodes on carrot. The Plant Pathology Journal, 33, 66-74.

Kiewnick S, Wolf S, Willareth M, Frey J E. 2013. Identification of the tropical root-knot nematode species Meloidogyne incognita, M. javanica and M. arenaria using a multiplex PCR assay. Nematology, 15, 891-894.

Kiewnick S, Holterman M, van den Elsen S, van Megen H, Frey J E, Helder J. 2014. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology, 140, 97-110.

Kopelman N, Mayzel J, Jakobsson M, Rosenberg N, Mayrose I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 2, 42-49.

Li K M, Dong Y Q, Cao X S, Bayier. 2015. Occurrence and identification of root-knot nematode on green house vegetables in Xinjiang. Plant Protection, 41, 191-194. (in Chinese)

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.

Liu M Y, Shao H D, Wu Y Y, Peng D L, Yu J W, Jia J P, Huang W K. 2023. Meloidogyne graminicola population structure in China suggests a south-to-north expansion. Plant Disease, 107, 2070-2080.

Long H, Sun Y, Chen Y, Pei Y, Feng T, Che H. 2023. Occurrence of root-knot nematodes (Meloidogyne spp.) on peppers in Hainan, China, and resistance of field cultivars to M. enterolobii and M. incognita. Plant Disease107, 3148-3154. 

Marquez J, Hajihassani A. 2023. Identification, diversity, and distribution of Meloidogyne spp. in vegetable fields of South Georgia, USA. Phytopathology, 113, 1093-1102.

Meng Q P, Long H, Xu J H. 2004. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Phytopathologica Sinica, 34, 204-210. (in Chinese)

Naz I, Khan R A A, Masood T, Baig A, Siddique I, Haq S. 2021. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biological Control, 152, 104429.

Nnamdi C, Grey T L, Hajihassani A. 2022. Root-knot nematode management for pepper and squash rotations using plasticulture systems with fumigants and non-fumigant nematicides. Crop Protection, 152, 105844.

Peng H, Peng D L, Hu X Q, He X F, Wang Q, Huang W K, He W T. 2012. Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology, 14, 977-986.

Picard D, Plantard O, Scurrah M, Mugniéry D. 2004. Inbreeding and population structure of the potato cyst nematode (Globodera: pallida) in its native area (Peru). Molecular Ecology, 13, 2899-2908.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.

Quan J R, Guo L. 1997. Root-knot nematodes of chilli peppers in Xinjiang. Xinjiang Agricultural Science, 1, 32-34. (in Chinese)

Ratnasingham S, Hebert P D. 2007. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular ecology notes, 7, 355-364.

Rusinque L, Nóbrega F, Cordeiro L, Lima A, Andrade S, Inácio M L. 2022. Root-knot nematode species associated with horticultural crops in the Island of Azores, Portugal. Horticulturae, 8, 101-109.

Sasser J N. 1954. Identification and host-parasite relationships of certain root-knot nematodes (Meloidogyne spp.). Technical Bulletin. Maryland Agricultural Experiment Station, 77, 1-30.

Shao H D, Zhang P, You C P, Li C R, Feng Y, Xie Z W. 2020. Genetic diversity of the root‐knot nematode Meloidogyne enterolobii in mulberry based on the mitochondrial COI gene. Ecology and Evolution, 10, 5391-5401.

Shao H D, Xue Q, Yao K, Cui J K, Huang W K, Kong L A, Li C R, Li H M, Peng D L, Smiley R W, Peng H. 2022. Origin and phylogeography of Chinese cereal cyst nematode Heterodera avenae revealed by mitochondrial COI sequences. Phytopathology, 112, 1988-1997.

Takahata N, Palumbi S R. 1985. Extranuclear differentiation and gene flow in the finite island model. Genetics, 109, 441-457.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.

Taylor A L, Sasser J N. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne species). Raleigh, NC: North Carolina State University Graphics.

Taylor A L, Sasser J N, Nelson L A. 1982. Relationship of climate and soil characteristics to geographical distribution of Meloidogyne species in agricultural soils, (p.65). International Meloidogyne Project.

Tigano M, De Siqueira K, Castagnone-Sereno P, Mulet K, Queiroz P, Dos Santos M, Carneiro R M D G. 2010. Genetic diversity of the root‐knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava‐damaging species. Plant Pathology, 59, 1054-1061.

Tsai C F, Tsay T T, Chen P. 2010. The effect of soil temperature on the penetration and development of three root-knot nematodes, Meloidogyne incognita, M. javanica and M. hapla. Plant Pathology Bulletin, 19, 235-242.

Vrain T C. 1978. Influence of chilling and freezing temperatures on infectivity of Meloidogyne incognita and M. hapla. Journal of Nematology, 10, 177-180.

Vrain T C, Barker K R, Holtzman G I. 1978. Influence of low temperature on rate of development of Meloidogyne incognita and M. hapla larvae. Journal of Nematology, 10, 311-313.

Vrain T C, Wakarchuk D A, Levesque A C, Hamilton R I. 1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 15, 563-573.

Xi X, Xing D, Fu Q, Chen X, Hang C, Lu Z. 2017. Pathogen identification of root-knot nematode disease in eight batches of strawberry seedlings transferred to Beijing. China Plant Protection Guide, 37, 45-48. (in Chinese)

Ye W, Robbins R T, Kirkpatrick T. 2019. Molecular characterization of root-knot nematodes (Meloidogyne spp.) from Arkansas, USA. Scientific Reports, 9, 15680.

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li W X. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348-355.

Zhou H, Shen P G. 2003. The treatment of ‘root velamen nematicide’ to parasitic nematodes within plant roots for entry-exit garden plants. Plant Quarantine, 4, 208-212. (in Chinese)


Fig 1. Occurrence and distribution of root-knot nematodes on vegetables fields in Xinjiang, China. A, the location of Xinjiang where root-knot nematode disease was investigated. B, distribution of all collected samples. C, distribution of root-knot nematode. D, distribution of M. incognita and M. hapla.

No related articles found!
No Suggested Reading articles found!