Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 353-365    DOI: 10.1016/j.jia.2024.08.021
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Mitigating ethyl carbamate production in Chinese rice wine: Role of raspberry extract

Yuxin Liu1, Chi Shen1, Xiaoyu Wang1, Chaogeng Xiao2, Zisheng Luo3, Guochang Sun4, Wenjing Lu2, Rungang Tian1, Lijia Dong1, Xueyuan Han1, 3#

1 School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China

2 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

3 College of Biosystems Engineering and Food Science/Zhejiang Key Laboratory of Agro-Food Processing/Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China

4 Zhejiang Kuaijishan Shaoxing Rice Wine Co., Ltd., Shaoxing 312030, China

 Highlights 
The addition of raspberry extract reduced ethyl carbamate level in Chinese rice wine.
Raspberry extract addition was speculated to promote the catabolism of urea and citrulline.
Raspberry extract addition affected the arginine metabolism of Saccharomyces cerevisiae.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究探究了覆盆子提取物(RBE)在缓解黄酒中氨基甲酸乙酯(EC)积累方面的应用。研究通过在发酵醪中添加RBE,并观察其对EC水平的影响。结果表明EC产量显著减少,这归因于RBE在改变尿素和瓜氨酸分解代谢和抑制精氨酸代谢方面的作用,从而防止EC前体物与乙醇反应。此外,挥发性成分和游离氨基酸分析显示RBE也增强了黄酒的风味。本研究还探讨了RBE在模拟发酵环境下对酿酒酵母(S. cerevisiae)精氨酸代谢的影响。结果观察到精氨酸水平升高、尿素和瓜氨酸水平降低、精氨酸代谢和运输途径中的酶活性和基因表达水平均出现变化。综上所述,本研究清楚地证明了RBE在降低黄酒中EC含量方面的作用,为制定降低EC的策略提供了有价值的见解。



Abstract  

This study investigated the use of raspberry extract (RBE) for mitigating ethyl carbamate (EC) accumulation in Chinese rice wine (Huangjiu), a traditional fermented beverage.  It focused on the addition of RBE to the fermentation mash and its effects on EC levels.  The results showed a significant reduction in EC production that could be attributed to RBE’s role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol.  Additionally, RBE enhanced the rice wine’s flavor profile, as shown by volatile component and amino acid analysis.  This study also explored RBE’s impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways.  In conclusion, the results clearly demonstrated RBE’s efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.

Keywords:  Chinese rice wine       ethyl carbamate        raspberry extract        Saccharomyces cerevisiae        arginine metabolism  
Received: 25 December 2023   Accepted: 31 May 2024
Fund: 
This study was supported by the National Natural Science Foundation of China (32202125), the Science and Technology Plan Project of Shaoxing City, China (2022A12003) and the Zhejiang Provincial Natural Science Foundation, China (LY24C200004).
About author:  Yuxin Liu, E-mail: YuxinLiu122524@163.com; #Correspondence Xueyuan Han, E-mail: 18867146394@163.com

Cite this article: 

Yuxin Liu, Chi Shen, Xiaoyu Wang, Chaogeng Xiao, Zisheng Luo, Guochang Sun, Wenjing Lu, Rungang Tian, Lijia Dong, Xueyuan Han. 2025. Mitigating ethyl carbamate production in Chinese rice wine: Role of raspberry extract. Journal of Integrative Agriculture, 24(1): 353-365.

Alberto M R, Manca de Nadra M C, Arena M E. 2012. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium. Brazilian Journal of Microbiology43, 167–176.

Benucci I, Esti M. 2021. Arginase activity characterization during alcoholic fermentation by sequential inoculation with non-Saccharomyces and Saccharomyces yeast. Food and Bioprocess Technology14, 1996–2003.

Benucci I, Fiorelli V, Lombardelli C, Liburdi K, Esti M. 2017. Kinetic characterization of arginase from Saccharomyces cerevisiae during alcoholic fermentation at different temperatures. LWT-Food Science and Technology82, 268–273.

Cao Y, Xie G F, Wu C, Lu J. 2010. A study on characteristic flavor compounds in traditional Chinese rice wine - Guyue Longshan rice wine. Journal of the Institute of Brewing116, 182–189.

Carrasco P, Pérez-Ortín J E, lí del Olmo M. 2003. Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Systematic and Applied Microbiology26, 471–479.

Chen D W, Ren Y P, Zhong Q D, Shao Y, Zhao Y F, Wu Y N. 2017. Ethyl carbamate in alcoholic beverages from China: Levels, dietary intake, and risk assessment. Food Control72, 283–288.

Chen Z, Jiang J Y, Li X B, Xie Y W, Jin Z X, Wang X Y, Li Y L, Zhong Y J, Lin J J, Yang W Q. 2021. Bioactive compounds and fruit quality of Chinese raspberry, Rubus chingii Hu varied with genotype and phenological phase. Scientia Horticulturae281, 109951.

Crépin L, Truong N M, Bloem A, Sanchez I, Dequin S, Camarasa C. 2017. Management of multiple nitrogen sources during wine fermentation by Saccharomyces cerevisiaeApplied and Environmental Microbiology83, e02617–e02616.

Dahabieh M S. 2008. Metabolic engineering of industrial yeast strains to minimize the production of ethyl carbamate in grape and sake wine. MSc thesis, University of British Columbia, Vancouver.

Deshavath N N, Mukherjee G, Goud V V, Veeranki V D, Sastri C V. 2020. Pitfalls in the 3,5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules156, 180–185.

Du H, Song Z W, Xu Y. 2018. Ethyl carbamate formation regulated by lactic acid bacteria and nonconventional yeasts in solid-state fermentation of Chinese Moutai-flavor liquor. Journal of Agricultural and Food Chemistry66, 387–392.

ElBerry H M, Majumdar M L, Cunningham T S, Sumrada R A, Cooper T G. 1993. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiaeJournal of Bacteriology175, 4688–4698.

Fu M L, Liu J, Chen Q H, Liu X J, He G H, Chen J C. 2010. Determination of ethyl carbamate in Chinese yellow rice wine using high-performance liquid chromatography with fluorescence detection. International Journal of Food Science and Technology45, 1297–1302.

He X X, Sun Y, Chen H. 2007. Study on determination method of L-arginine in fermentation broth. Food Drug9, 18–20.

Jagerdeo E, Dugar S, Foster G D, Schenck H. 2002. Analysis of ethyl carbamate in wines using solid-phase extraction and multidimensional gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry50, 5797–5802.

Jin Z, Cai G L, Wu C, Hu Z M, Xu X B, Xie G F, Wu D H, Lu J. 2021. Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. Food Research International139, 109955.

Kim J E, Jeong D W, Lee H J. 2007. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expression and Purification53, 9–15.

Lehtonen P. 1996. Determination of amines and amino acids in wine - A review. American Journal of Enology and Viticulture47, 127–133.

Liang Z C, Lin X Z, He Z G, Su H, Li W X, Ren X Y. 2020. Amino acid and microbial community dynamics during the fermentation of Hong Qu glutinous rice wine. Food Microbiology90, 103467.

Liu J, Xu Y, Nie Y, Zhao G A. 2012. Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine. Bioprocess and Biosystems Engineering35, 651–657.

Liu X Y, Qian M, Dong H, Bai W D, Zhao W H, Li X L, Liu G L. 2020. Effect of ageing process on carcinogen ethyl carbamate (EC), its main precursors and aroma compound variation in Hakka Huangjiu produced in southern China. International Journal of Food Science and Technology55, 1773–1780.

Livak K, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Luo T, Fan W L, Xu Y. 2008. Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatography–mass spectrometry. Journal of the Institute of Brewing114, 172–179.

Martínez-Avila O, Sánchez A, Font X, Barrena R. 2020. 2-phenylethanol (rose aroma) production potential of an isolated Pichia kudriavzevii through solid-state fermentation. Process Biochemistry93, 94–103.

Messenguy F, Dubois E 2000. Regulation of arginine metabolism in Saccharomyces cerevisiae: A network of specific and pleiotropic proteins in response to multiple environmental signals. Food Technology and Biotechnology38, 277–286.

Ha M S, Kwon K S, Kim M, Park H R, Hu S J, Lee H, Kim K M, Ko E J, Ha S D, Bae D H. 2006. Exposure assessment of ethyl carbamate in alcoholic beverages. Journal of Microbiology and Biotechnology16, 480–483.

Ni L, LV X C, Huang Z Q, Cai Q Q, Liang S, Rao P F. 2012. Research progress on physiological efficacy and physiological active substances of Chinese rice wine. Journal of Chinese Institute of Food Science and Technology12, 1–7. (in Chinese)

Ough C, Crowell E A, Mooney L A. 1988. Formation of ethyl carbamate precursors during grape juice (Chardonnay) fermentation. I. Addition of amino acids, urea, and ammonia: Effects of fortification on intracellular and extracellular precursors. American Journal of Enology and Viticulture39, 243–249.

Pang X N, Li Z J, Chen J Y, Gao L J, Han B Z. 2017. A comprehensive review of spirit drink safety standards and regulations from an international perspective. Journal of Food Protection80, 431–442.

Pavlović A V, Papetti A, Zagorac D Č D, Gašić U M, Mišić D M, Tešić Ž L, Natić M M. 2016. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Industrial Crops and Products87, 304–314.

Radonić A, Thulke S, Mackay I M, Landt O, Siegert W, Nitsche A. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications313, 856–862.

Schlatter J, Lutz W K. 1990. The carcinogenic potential of ethyl carbamate (urethane): Risk assessment at human dietary exposure levels. Food and Chemical Toxicology28, 205–211.

Shen F, Ying Y B, Li B B, Zheng Y F, Hu J G. 2011. Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy. Food Research International44, 1521–1527.

Spano G, Massa S, Arena M E, de Nadra M C M. 2007. Arginine metabolism in wine Lactobacillus plantarumin vitro activities of the enzymes arginine deiminase (ADI) and ornithine transcarbamilase (OTCase). Annals of Microbiology57, 67–70.

Uthurry C, Lepe J S, Lombardero J, Del Hierro J G. 2006. Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry94, 262–270.

Vrancken G, Rimaux T, Weckx S, de Vuyst L, Leroy F. 2009. Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101. International Journal of Food Microbiology135, 216–222.

Wagemaker M J, Eastwood D C, van der Drift C, Jetten M S, Burton K, van Griensven L J, den Camp H J O. 2007. Argininosuccinate synthetase and argininosuccinate lyase: Two ornithine cycle enzymes from Agaricus bisporusMycological Research111, 493–502.

Wang C, Wang M, Zhang M P. 2021. Ethyl carbamate in Chinese liquor (Baijiu): Presence, analysis, formation, and control. Applied Microbiology and Biotechnology105, 4383–4395.

Wang D P, Yang B L, Zhai X W, Zhou L G. 2007. Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology88, 807–812.

Weber J, Sharypov V. 2009. Ethyl carbamate in foods and beverages - A review. Environmental Chemistry Letters3, 429–452.

White E J, Venter M, Hiten N F, Burger J T. 2008. Modified cetyltrimethylammonium bromide method improves robustness and versatility: The benchmark for plant RNA extraction. Journal of Biotechnology3, 1424–1428.

Wu D H, Li X M, Sun J Y, Cai G L, Xie G F, Lu J. 2018. Effect of citrulline metabolism in Saccharomyces cerevisiae on the formation of ethyl carbamate during Chinese rice wine fermentation. Journal of the Institute of Brewing124, 77–84.

Wu P G, Pan X D, Wang L Y, Shen X H, Yang D J. 2012. A survey of ethyl carbamate in fermented foods and beverages from Zhejiang, China. Food Control23, 286–288.

Yang Y J, Hu W Y, Xia Y J, Mu Z Y, Tao L R, Song X, Zhang H, Ni B, Ai L Z. 2020. Flavor formation in Chinese rice wine (Huangjiu): Impacts of the flavor-active microorganisms, raw materials, and fermentation technology. Frontiers in Microbiology11, 580247.

Yu G H, Luo Z Q, Wang W B, Li Y H, Zhou Y T, Shi Y Y. 2019. Rubus chingii Hu: A review of the phytochemistry and pharmacology. Frontiers in Pharmacology10, 799.

Yu H Y, Xie T, Xie J R, Ai L Z, Tian H X. 2019. Characterization of key aroma compounds in Chinese rice wine using gas chromatography–mass spectrometry and gas chromatography-olfactometry. Food Chemistry293, 8–14.

Yu H Y, Ying Y B, Fu X P, Lu H S. 2006. Quality determination of Chinese rice wine based on Fourier transform near infrared spectroscopy. Journal of Near Infrared Spectroscopy14, 37–44.

Yu W, Li X M, Lu J, Xie G F. 2018. Citrulline production by lactic acid bacteria in Chinese rice wine. Journal of the Institute of Brewing124, 85–90.

Zhai X Y, Chi J F, Tang W L, Ji Z, Zhao F, Jiang C J, Lv H T, Guo H Y. 2014. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2,-9 expression and improve atherosclerotic plaque in LDL-receptor–knockout mice. Journal of Pharmacological Sciences125, 132–141.

Zhang P, Du G C, Zou H J, Chen J, Xie G F, Shi Z P, Zhou J W. 2016. Effects of three permeases on arginine utilization in Saccharomyces cerevisiaeScientific Reports6, 20910.

Zhang P, Hu X. 2018. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiaeWorld Journal of Microbiology and Biotechnology34, 1–8.

Zhao L, Ouyang H Y, Zhang N H, Wang C T, Ji B P, Zhou F. 2021. Effects of Huangjiu, Baijiu and red wine combined with high-fat diet on glucose and lipid metabolism: Aggravate or alleviate? Alcohol and Alcoholism56, 334–347.

Zhao X R, Du G C, Zou H J, Fu J W, Zhou J W, Chen J. 2013a. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends in Food Science and Technology32, 97–107.

Zhao X R, Zou H J, Fu J W, Chen J, Zhou J W, Du G C. 2013b. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiaeYeast30, 437–447.

Zheng H J, Meng K, Liu J, Lin Z C, Peng Q, Xie G F, Wu P. 2022. Identification and expression of bifunctional acid urea-degrading enzyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu). Journal of the Science of Food and Agriculture102, 4599–4608.

Zhong X F, Wang A L, Zhang Y B, Wu Z Y, Li B, Lou H, Huang G D, Wen H X. 2020. Reducing higher alcohols by nitrogen compensation during fermentation of Chinese rice wine. Food Science and Biotechnology29, 805–816.

Zhou W Y, Fang R S, Chen Q H. 2017. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing. Food Chemistry233, 174–181.

Zhou W Y, Hu J J, Zhang X L, Chen Q H. 2020. Application of bamboo leaves extract to Chinese yellow rice wine brewing for ethyl carbamate regulation and its mitigation mechanism. Food Chemistry319, 126554.

No related articles found!
No Suggested Reading articles found!