Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genome-wide association study of novel genetic loci for cadmium accumulation and germplasm screening for low-cadmium accumulation in common wheat (Triticum aestivum L.)

Li Zhe1, Hui Wang2, Jiping Chen2, Xiaoge Fu1, Liang Wang3, Yang Yang4, Tauqeer Ahmad Yasir5, Huili Yan6, Hongyan Chu7, Chi Zhang8, Yingang Hu1, Xiaoyong Liao3, Hanzhong Jia8, Liang Chen1

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling 712100, China

2 Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xian 710068, China

3 Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

4 College of Agriculture, Shanxi Agricultural University (Institute of Crop Sciences), Taiyuan 030031, China

5 Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan

6 Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China

7 Xinjiang Agricultural Vocational Technical University, Changji 831100, China

8 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
小麦耕地中镉(Cd)污染正以令人担忧的速度增长,对粮食安全和公共健康构成威胁。育种并利用镉积累水平较低的小麦品种是对抗小麦Cd污染的有效策略。采用分子标记辅助方法可以大大加快选择和改良镉积累水平较低的小麦品种。然而,有关小麦镉积累的基因研究仍然很少。本研究采用高密度660K SNP阵列对175个小麦种质进行了籽粒Cd浓度(GCdC)、生物富集因子(BCF)和转运因子(TF)的全基因组关联研究(GWAS)。结果显示,在三种不同环境下发现了401个显著的SNP。连锁不平衡分析揭示了30个核心的定量性状位点(QTLs),能够可靠地调节小麦Cd积累表型。通过基因注释、转录组学和基因分子特征,确定了四个候选基因(TraesCS7B02G000200TraesCS4A02G035900TraesCS4A02G040900TraesCS5D02G564000)可能成为小麦Cd积累生物过程的组成部分。此外,本研究筛选出6个表现出低籽粒Cd积累的小麦种质,并开发了两种有助于育种选择的Kompetitive Allele Specific PCR(KASP)标记。这些发现为培育低Cd积累小麦提供了宝贵的遗传资源,并为了解小麦低Cd积累的分子机制奠定了基础。本研究阐明的候选基因和KASP标记在小麦低Cd积累育种中具有潜在的应用价值。


Abstract  

Cadmium (Cd) contamination in wheat farmland is increasing at an alarming rate, posing threats to food security and public health.  Breeding and utilizing wheat varieties characterized by low Cd accumulation levels constitute an effective strategy in the battle against wheat Cd contamination.  The adoption of molecular marker-assisted approaches can greatly expedite the selection and enhancement of wheat varieties with low Cd accumulation.  Nonetheless, research concerning genes associated with wheat cadmium accumulation remains scarce.  In this study, a high-density 660K SNP array was employed for conducting genome-wide association studies (GWASs) on the grain Cd concentration (GCdC), bioconcentration factor (BCF) and translocation factor (TF) in 175 wheat germplasms.  The findings revealed 401 significant SNPs identified across three diverse environments. Linkage disequilibrium analysis revealed 30 core quantitative trait locus (QTLs)capable of reliably modulating wheat Cd accumulation phenotypes.  Through gene annotation, transcriptomics, and gene molecular features, four candidate genes (TraesCS7B02G000200, TraesCS4A02G035900, TraesCS4A02G040900, TraesCS5D02G564000) were identified as potential constituents of the biological process of wheat Cd accumulation.  Furthermore, in this study 6 wheat germplasms exhibiting low grain Cd accumulation were isolated, and two Kompetitive Allele Specific PCR (KASP) markers conducive to breeding selection were developed.  These findings provide valuable genetic resources for cultivating wheat with low Cd accumulation and establish a foundation for understanding the molecular mechanisms underlying low Cd accumulation in wheat.  The candidate genes and KASP markers elucidated in this research have potential for effective employmentuse in genetic enhancement and marker-assisted selection in the breeding of wheat with low Cd accumulation.

Keywords:  Triticum aestivum       cadmium accumulation              genome-wide association analysis              functional prediction              molecular marker  
Received: 26 June 2024   Online: 14 November 2024  
Fund: 
This work was supported by the National Key Research and Development Program of China (2023YFD1700100 and 2023YFD1700102) and the Shaanxi Public Welfare Special Project of geological prospecting, China (201908).
About author:  #Correspondence Yingang Hu, E-mail: huyingang@nwsuaf.edu.cn; Liang Chen, E-mail: chenliang9117@nwafu.edu.cn

Cite this article: 

Li Zhe, Hui Wang, Jiping Chen, Xiaoge Fu, Liang Wang, Yang Yang, Tauqeer Ahmad Yasir, Huili Yan, Hongyan Chu, Chi Zhang, Yingang Hu, Xiaoyong Liao, Hanzhong Jia, Liang Chen. 2024. Genome-wide association study of novel genetic loci for cadmium accumulation and germplasm screening for low-cadmium accumulation in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.11.029

AbuHammad W A, Mamidi S, Kumar A, Pirseyedi S, Manthey F A, Kianian S F, Alamri M S, Mergoum M, Elias E M. 2016. Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars. Molecular Breeding, 36, 112.

Adomako, Opoku M, Yu F. 2023. Effects of resource availability on the growth, Cd accumulation, and photosynthetic efficiency of three hyperaccumulator plant species. Journal of Environmental Management345, 118762.

Ahmad M S, Ashraf M, Tabassam Q, Hussain M, Firdous H. 2011. Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research144, 1229-1239.

Ai H, Wu D X, Li C L, Hou M M. 2022. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. Frontiers in Plant Science13, 1003953.

Alexey M, Timur S, Paulina F, Adylkhan B, Vladimir C, Anastasiya K, Hamit K, Ivan L, Ram S, Tatyana S, Sergey S, Ekaterina S, Vladimir S. 2022. Effects of environments and cultivars on grain ionome of spring wheat grown in Kazakhstan and Russia. Crop and Pasture Science73, 515-527.

Alvarez-Fernandez A, Bernal M J, Fradejas I, Martin Ramirez A, Md Yusuf N A, Lanza M, Hisam S, Perez de Ayala A, Rubio J M. 2021. KASP: A genotyping method to rapid identification of resistance in Plasmodium falciparum. Malaria Journal20, 16.

Bhatta M, Baenziger P S, Waters B M, Poudel R, Belamkar V, Poland J, Morgounov A. 2018. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. International Journal of Molecular Sciences, 19, 3237.

Chen W K, Chen L, Zhang X, Yang N, Guo J H, Wang M, Ji S H, Zhao X Y, Yin P F, Cai L C, Xu J, Zhang L L, Han Y J, Xiao Y N, Xu G, Wang Y B, Wang S H, Wu S, Yang F, Jackson D, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 375, 1372.

Ci D W, Jiang D, Li S S, Wollenweber B, Dai T B, Cao W X. 2012. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat. Acta Physiologiae Plantarum34, 191-202.

Ci D W, Jiang D, Wollenweber B, Dai T B, Jing Q, Cao W X. 2010. Cadmium stress in wheat seedlings: Growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum32, 365-373.

Fu Z Y, Song J C, Jameson P E. 2017. A rapid and cost effective protocol for plant genomic DNA isolation using regenerated silica columns in combination with CTAB extraction. Journal of Integrative Agriculture16, 1682-1688.

Guttieri M J, Baenziger P S, Frels K, Carver B, Arnall B, Wang S C, Akhunov E, Waters B M. 2015. Prospects for selecting wheat with increased zinc and decreased cadmium concentration in grain. Crop Science55, 1712-1728.

Hua Y P, Chen J F, Zhou T, Zhang T Y, Shen D D, Feng Y N, Guan P D, Huang S M, Zhou Z F, Huang J Y, Yue C P. 2022. Multiomics reveals an essential role of long-distance cadmium translocation in regulating plant cadmium resistance and grain cadmium accumulation in allohexaploid wheat (Triticum aestivum L.). Journal of Experimental Botany, 73, 7516-7537.

Huang M, Liu X L, Zhou Y, Summers R M, Zhang Z W. 2019. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience8, giy154.

Ishimaru Y, Bashir K, Nakanishi H, Nishizawa N K. 2012. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signaling & Behavior7, 763-766.

Ju S Y, Wang J, Sehn L B, Li Z, Chen Y H, Wu L H, Luo Y M. 2015. Phytoremediation of heavy metal contaminated soils by intercropping with Sedum plumbi zincicola and Triticum aestivum and rotation with Solanum melongena. Chinese Journal of Ecology, 8, 2181 -2186. (in Chinese)

Kaewcheenchai R, Vejchasarn P, Hanada K, Shirai K, Jantasuriyarat C, Juntawong P. 2021. Genome-wide association study of local Thai indica rice seedlings exposed to excessive iron. Plants-Basel10, 798.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907-915.

Knox R E, Pozniak C J, Clarke F R, Clarke J M, Houshmand S, Singh A K. 2009. Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome, 52, 741-747.

Liu L, Zuo X, Zhu Z, Wen L, Yang C, Zhu C, Tang L, Cheng Y, Chen M, Zhou F, Zheng X, Wang W, Yin X, Tang H, Sun L, Yang S, Sheng Y, Cui Y, Zhang X. 2018. Genome-wide association study identifies three novel susceptibility loci for systemic lupus erythematosus in Han Chinese. British Journal of Dermatology179, 506-508.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Ludwig Y, Slamet-Loedin I H. 2019. Genetic biofortification to enrich rice and wheat grain iron: From genes to product. Frontiers in Plant Science10, 833.

Lv Q Y, Han M L, Gao Y Q, Zhang C Y, Wang Y L, Chao Z F, Zhong L L, Chao D Y. 2020. Sec24C mediates a Golgi-independent trafficking pathway that is required for tonoplast localization of ABCC1 and ABCC2. The New Phytologist235, 1486–1500.

Maccaferri M, Harris N S, Twardziok S O, Pasam R K, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade V M, Milner S G, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, et al. 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics51, 885-895.

Maiti S K, Jaiswal S. 2008. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: A field study from Santaldih thermal power plant, West Bengal, India. Environmental Monitoring and Assessment136, 355-370.

Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. 2011. OsHMA3, a P-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist189, 190-199.

Naserkheil M, Lee D H, Mehrban H. 2020. Improving the accuracy of genomic evaluation for linear body measurement traits using single-step genomic best linear unbiased prediction in Hanwoo beef cattle. BMC Genetics21, 144.

Pang Y, Liu C, Wang D, St Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant13, 1311-1327.

Park W H, Han K H, Ahn S J. 2012. Differences in root-to-shoot Cd and Zn translocation and by HMA3 and 4 could influence chlorophyll and anthocyanin content in Arabidopsis Ws and Col-0 ecotypes under excess metals. Soil Science and Plant Nutrition58, 334 - 348.

Penner G A, Bezte L J, Leisle D, Clarke J. 1995. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome38, 543-547.

Qiao L, Wheeler J, Wang R, Isham K, Klassen N, Zhao W, Su M, Zhang J, Zheng J, Chen J. 2021. Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Frontiers in Plant Science12, 756741.

Qiu X, Pang Y, Yuan Z, Xing D, Xu J, Dingkuhn M, Li Z, Ye G. 2015. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS ONE10, e0145577.

Ramirez-Gonzalez R H, Uauy C, Caccamo M. 2015. PolyMarker: A fast polyploid primer design pipeline. Bioinformatics31, 2038-2039.

Ren C, Ren Y Z, Wang H, Zhu L W, Li J T, Du Q Q, Li P. 2022. Cadmium accumulation characteristics of different heat varieties under cadmium stress. Environmental Science43, 1606-1619. (in Chinese)

Reyes-Hinojosa D, Lozada-Perez C A, Zamudio Cuevas Y, Lopez-Reyes A, Martinez-Nava G, Fernandez-Torres J, Olivos-Meza A, Landa-Solis C, Gutierrez-Ruiz M C, Rojas Del Castillo E, Martinez-Flores K. 2019. Toxicity of cadmium in musculoskeletal diseases. Environ Toxicol Pharmacol72, 103219.

Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel M I, Ok Y S. 2016. Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety130, 43-53.

Safdar L B, Almas F, Sarfraz S, Ejaz M, Ali Z, Mahmood Z, Yang L, Tehseen M M, Ikram M, Liu S, Quraishi U M. 2020. Genome-wide association study identifies five new cadmium uptake loci in wheat. Plant Genome13, e20030.

Sarantopoulou D, Tang S Y, Ricciotti E, Lahens N F, Lekkas D, Schug J, Guo X F S, Paschos G K, FitzGerald G A, Pack A, Grant G R. 2019. Comparative evaluation of RNA-Seq library preparation methods for strand-specificity and low input. Scientific Reports9, 13477.

Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I J C. 2021. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere291, 132979.

Song P P, Xu D, Yue J Y, Ma Y C, Dong S J, Feng J. 2022. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. The Science of the Total Environment838, 156417.

Suneja Y, Gupta A K, Bains N S. 2017. Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress. Physiology and Molecular Biology of Plants, 23, 99-114.

Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell & Environment35, 1948-1957.

Tong J, Zhao C, Sun M, Fu L, Song J, Liu D, Zhang Y, Zheng J, Pu Z, Liu L, Rasheed A, Li M, Xia X, He Z, Hao Y. 2022. High resolution genome wide association studies reveal rich genetic architectures of grain zinc and iron in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 13, 840614.

VanRaden P M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science91, 4414-4423.

Voss-Fels K, Snowdon R J. 2016. Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnology Journal14, 1086-1094.

Wang S, Wei S, Ji D, Bai J. 2015. Co-planting Cd contaminated field using hyperaccumulator Solanum nigrum L. through interplant with low accumulation welsh onion. International Journal of Phytoremediation, 17, 879-884.

Wang Y F, Su Y, Lu S G. 2020. Predicting accumulation of Cd in rice (Oryza sativa L.) and soil threshold concentration of Cd for rice safe production. Science of the Total Environment738, 139805.

Wiebe K, Harris N S, Faris J D, Clarke J M, Knox R E, Taylor G J, Pozniak C J. 2010. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theoretical and Applied Genetics121, 1047-1058.

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2, 100141.

Yaashikaa P R, Kumar P S, Jeevanantham S, Saravanan R. 2022. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution301, 119035.

Yan H, Guo H, Xu W, Dai C, Kimani W, Xie J, Zhang H, Li T, Wang F, Yu Y, Ma M, Hao Z F, He Z. 2023. GWAS-assisted genomic prediction of cadmium accumulation in maize kernel with machine learning and linear statistical methods. Journal of Hazardous Materials441, 129929.

Yang J, Gao M X, Hu H, Ding X M, Lin H W, Wang L, Xu J M, Mao C Z, Zhao F J, Wu Z C. 2016. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytologist211, 658-670.

Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38, 203-208.

Zaid I U, Muhammad S H, Zhang N, Zheng X, Wang L K, Li X F. 2022. Phenotypic variations of wheat cultivars from the North China Plain in response to cadmium stress and associated single nucleotide polymorphisms identified by a genome-wide association study. Pedosphere32, 555-564.

Zhang J, Zhao J, Liang Y, Zou Z. 2015. Genome-wide association-mapping for fruit quality traits in tomato. Euphytica207, 439-451.

Zhang L, Gao C, Chen C, Zhang W, Huang X Y, Zhao F J. 2020. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. Environmental Science & Technology54, 10100-10108. 

Zhang L G, Zhang C, Du B Y, Lu B X, Zhou D M, Zhou J, Zhou J. 2020. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Science of the Total Environment725, 138358.

Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. 2010. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics42, 355-360.

Zhao J, Yang W, Zhang S, Yang T, Liu Q, Dong J, Fu H, Mao X, Liu B. 2018. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice (N Y), 11, 61. 

Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z, Shen Y, Pan G, Lin H. 2018. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. Bmc Genomics19, 91.

Zimmerl S, Lafferty J, Buerstmayr H, Hartl L. 2014. Assessing diversity in Triticum durum cultivars and breeding lines for high versus low cadmium content in seeds using the CAPS marker usw47. Plant Breeding133, 712-717.

No related articles found!
No Suggested Reading articles found!