Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genome- and transcriptome-wide association studies reveal the genetic basis of seed palmitic acid content in Brassica napus

Haijiang Liu1, 2, 3, Yongheng Yuan1, 2, 3, YunShan Tang1, 2, 3, RuoShui Li1, 2, 3, Kaijie Ye1, 2, 3, Mengzhen Zhang1, 2, 3, Kun Lu1, 2, 3, Nengwen Yin1, 2, 3, Huiyan Zhao1, 2, 3, Yuanyuan Liu1, 2, 3, Taocui Huang4, Rui Wang1, 2, 3, Lei Shi5, Hai Du1, 2, 3#, Cunmin Qu1, 2, 3#

1 Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and college of Agronomy and Biotechnology, Southwest University, Chongqing 401335, China

2 Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China

3 Academy of Agricultural Sciences, Southwest University, Chongqing400715, China

4 Chongqing Academy of Agricultural Sciences, Chongqing 40216, China

5 National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

油菜是世界上最重要的油料作物之一。培育优质油菜品种是一个长期的育种目标。降低菜籽油中的主要饱和脂肪酸棕榈酸的含量,可以极大的改善菜籽油的品质。本研究对393份甘蓝型油菜种子中的棕榈酸含量进行全基因组关联分析转录组关联分析,确定4个(BnaA08.DAPBnaA08.PAA1BnaAO8.DUF106BnaC03.DAP)影响种子棕榈酸含量的候选基因。以上候选基因在开花后2040天的基因表达量SPAC呈显著相关。基于以上候选基因的遗传变异,我们结合候选基因关联分析和单倍型分析,鉴定出4种低棕榈酸单倍型。携带低棕榈酸单倍型的油菜种子中棕榈酸含量要显著低于携带高棕榈酸单倍型的油菜品种,但不影响种子含油量、蛋白质含量和产量。基于BnaA08.DUF106启动子上的与棕榈酸含量显著关联的功能SNP chrA08_9529850C/A开发了一个可用于甘蓝型油菜低棕榈酸的选育的分子标记Bn_A8_SPAC_Marker。本研究结果为解析甘蓝型油菜种子棕榈酸含量的遗传基础提供了有价值的信息。此外,本研究确定的候选基因、优异单倍型和分子标记将为低棕榈酸油菜品种选育提供参考。



Abstract  

Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide.  Development of rapeseed varieties with high-quality oil is a long-term breeding goal.  Reducing the contents of palmitic acid, the main saturated fatty acid in rapeseed oil, could greatly improve oil quality.  Here, we performed genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) of seed palmitic acid content (SPAC) using 393 diverse B. napus accessions.  Four genes (BnaA08.DAP, BnaA08.PAA1, BnaA08DUF106, and BnaC03.DAP) were identified by both GWAS and TWAS.  The transcripts per million (TPM) values of these candidate genes at 20 and 40 days after flowering (DAF) were significantly correlated with SPAC in this association panel.  Based on genetic variation in the candidate genes, we identified four low-SPAC haplotypes by combining candidate gene association analysis and haplotype analysis.  Brassica napus accessions carrying low-SPAC haplotypes had lower SPAC than those carrying high-SPAC haplotypes without affecting seed oil content, seed protein content, or seed yield.  Based on the functional single-nucleotide polymorphism (SNP) chrA08_9529850 (C/A) in the promoter of BnaA08.DUF106, we developed a molecular marker (Bn_A8_SPAC_Marker) that could be used to facilitate breeding for low SPAC in B. napus.  Our findings provide valuable information for studying the genetic control of SPAC in B. napus.  Moreover, the candidate genes, favorable haplotypes, and molecular marker identified in this study will be useful for breeding low-SPAC B. napus varieties.

Keywords:  rapeseed       genome-wide association study              transcriptome-wide association study              seed palmitic acid content              haplotype analysis              molecular marker  
Online: 12 November 2024  
Fund: 

The authors are grateful for the financial support provided by the National Key Research and Development Program of China (2023YFD1201405), the National Natural Science Foundation of China (32272150, 32072093), the Natural Science Foundation of Chongqing, China (CSTB2022TIAD-KPX0010 and CSTB2022NSCQ-LZX0034), the Innovation and Entrepreneurship Training Program for Undergraduates, China (S202410635206).

About author:  #Correspondence Cunmin Qu, E-mail: drqucunmin@swu.edu.cn; Hai Du, E-mail: haidu81@126.com

Cite this article: 

Haijiang Liu, Yongheng Yuan, YunShan Tang, RuoShui Li, Kaijie Ye, Mengzhen Zhang, Kun Lu, Nengwen Yin, Huiyan Zhao, Yuanyuan Liu, Taocui Huang, Rui Wang, Lei Shi, Hai Du, Cunmin Qu. 2024. Genome- and transcriptome-wide association studies reveal the genetic basis of seed palmitic acid content in Brassica napus. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.11.015

Belide S, Petrie J R, Shrestha P, Singh S P. 2012. Modification of seed oil composition in Arabidopsis by artificial microRNA-Mediated Gene Silencing. Frontiers in Plant Science, 3, 168.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633-2638.

Cortés A J, Du H. 2023. Molecular genetics enhances plant breeding. International Journal of Molecular Sciences, 24, 9977.

Danecek P, Auton A, Abecasis G, Albers GA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R=). 2011. The variant call format and VCFtools. Bioinformatics, 27, 2156-2164.

Gacek K, Bayer P E, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J.2017. Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica napus. Frontiers in Plant Science, 7, 2062.

Guan M, Huang X, Xiao Z, Jia L, Wang S, Zhu M, Qiao C, Wei L, Xu X, Liang Y, Wang R, Lu K, Li J, Qu C. 2019. Association mapping analysis of fatty acid content in different ecotypic rapeseed using mrMLM. Frontiers in Plant Science, 9, 1872.

Guyton J R, Ponder M, Kirkpatrick C F. 2023. Advances in understanding palmitic acid metabolism and health risks. Journal of Clinical Lipidology, 17, 571-573.

Huang K L, Tian J, Wang H, Fu Y, Li Y, Zheng Y, Bao X. 2021. Fatty acid export protein BnFAX6 functions in lipid synthesis and axillary bud growth in Brassica napus. Plant Physiology, 186, 2064-2077.

Khlestkina E, Shavrukov Y. 2022. Molecular-genetic basis of plant breeding. Biomolecules, 12, 1392.

Li H, Thrash A, Tang J D, He L, Yan J, Warburton M L. 2019. Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. The Plant Journal, 98, 853-863.

Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, Wu X, Yao X, Wen W, Chen W, Guo L.2023. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biology, 24, 141.

Li Y, Ali U, Cao Z, Cao Z, Zeng C, Xiao M, Wei F, Yao X, Guo L, Lu S. 2022. Fatty acid exporter 1 enhances seed oil content in Brassica napus. Molecular Breeding, 42, 75.

Lippert C, Listgarten J, Liu Y, Kadie C M, Davidson R I, Heckerman D. 2011. FaST linear mixed models for genome-wide association studies. Nature Methods, 8, 833-835.

Liu H, Wang J, Zhang B, Yang X, Hammond J, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L.2021. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. Annals of Botany, 128, 919-930.

Liu H, Wang J, Zhang B, Yang X, Yuan P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L.2022a. Genome-wide association study identifies new loci for 1000-seed weight in Brassica napus. Euphytica, 218, 142.

Liu H, Wang W, Yang M, Yuan P, Hammond J, King G, Ding G, White P, Wang S, Cai H, Wang C, Lu C, Xu F, Shi L. . 2022b. Genome-wide association studies of important agronomic traits in Brassica napus: What we have learned and where we are headed. Annual Plant Review online, 5, 151-180.

Liu H, Zou M, Zhang B, Yang X, Yuan P, Ding G, Xu F, Shi L.. 2022c. Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in Brassica napus. Molecular Breeding, 42, 61.

Mai N T P, Nguyen L T T, Tran S G, To H T M. 2023. Genome-wide association study reveals useful QTL and genes controlling the fatty acid composition in rice bran oil using Vietnamese rice landraces. Functional & Integrative Genomics, 23, 150.

Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, Buono P.=. 2015. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20, 17339-17361.

Qi Z, Guo C, Li H, Qiu H, Li H, Jong C, Yu G, Zhang Y, Hu L, Wu X, Xin D, Yang M, Liu C, Lv J, Wang X, Kong F, Chen Q. 2023. Natural variation in fatty acid 9 is a determinant of fatty acid and protein content. Plant Biotechnology Journal, 22, 759-773.

Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J. 2017. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics, 18, 232.

Rajcan I, Carrero-Colón M, Hudson K. 2022. Reduced palmitic acid content in soybean as a result of mutation in FATB1a. PLoS ONE, 17, e0262327.

Sinha P, Singh V K, Saxena R K, Khan AW, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya H, Kumar A, Varshney R.. 2020. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnology Journal, 18, 2482-2490.

Sivabharathi R C, Rajagopalan V R, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. 2024. Haplotype-based breeding: A new insight in crop improvement. Plant Science, 346, 112129.

Song J, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W, Cheng Y, Zhang Y, Liu K, Yang Q, Chen L, Guo L.. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 6, 34-45.

Tang S, Zhao H, Lu S, Yu L, Zhang G, Zhang Y, Yang Q, Zhou Y, Wang X, Ma W, Xie W, Guo L. 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 14, 470-487.

Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira A, Knowles D, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K, Björkegren J, Im H, Pasaniuc B, Rivas M, Kundaje A.  2019. Opportunities and challenges for transcriptome-wide association studies. Nature Genetics, 51, 592-599.

Wang M, Cheng J, Wu J, Chen J, Liu D, Wang C, Ma S, Guo W, Li G, Di D, Zhang Y, Han D, Kronzucker H, Xia G, Shi W.2024. Variation in TaSPL6-D confers salinit tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nature Genetics, 56, 1257-1269.

Wang Z, Wang Y, Shang P,Yang C, Yang M, Huang J, Ren B, Zuo Z, Zhang Q, Li W, Song B.2022. Overexpression of soybean GmWRI1a stably increases the seed oil content in soybean. International Journal of Molecular Sciences, 23, 5084.

Xiao Z, Tang F, Zhang L, Li S, Wang S, Huo Q, Yang B, Zhang C, Wang D, Li Q, Wei L, Guo T, Qu C, Lu K, Zhang Y, Guo L, Li J, Li N. 2021. The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. Biotechnology for Biofuels, 14, 190.

Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q. 2023. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Molecular Plant, 16, 775-789.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19, 619-628.

Zhang C, Dong S, Xu J, He W, Yang T.2019. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 15, 1786-1788.

Zhang C, Gong R, Zhong H, Dai C, Zhang R, Dong J, Li Y, Liu S, Hu J. 2023. Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. Frontiers in Plant Science, 14, 1153000.

Zhang Y, Zhang H, Zhao H, Xia Y Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X, Guo L. 2022. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology, 23, 86.

Zheng H, Zhao D, Shao W, Lu Y, Wang W, Hu Y, Li J, Zhu S, Wang X. 2022. GmWRI1c increases palmitic acid content to regulate seed oil content and nodulation in soybean (Glycine max). International Journal of Molecular Sciences, 23, 13793.

Zuo R, Xie M, Gao F, Liu J, Tang M, Cheng X, Liu Y, Bai Z, Liu S. 2022. Genome-wide identification and functional exploration of the legume lectin genes in Brassica napus and their roles in Sclerotinia disease resistance. Frontiers in Plant Science, 13, 963263.

No related articles found!
No Suggested Reading articles found!