Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Inheritance and QTL mapping identified multi-effects loci for fatty acid related traits in peanut (Arachis hypogaea L.)
Guanghao Wang1*, Hui Wang2, 3*, Liangqiong He4, Zhuqiang Han4, Jiaowen Pan1, Huan Zhang1, Lei Hou1, Xingjun Wang1, Baozhu Guo2, 3#, Chuanzhi Zhao1#  #br#
1 Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Jinan 250100, PR China
2 Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research Service, Tifton, GA 31793, USA 
3 Department of Plant Pathology, University of Georgia, Tifton, GA, USA
4 Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

花生 (Arachhis hypogaea L.) 是一种油料、食用兼用的重要作物。脂肪酸组不仅影响花生油的质量,并且影响花生食品的风味保质期,进而影响消费者健康。花生油的组成可以分三个部分:占比约80%的油酸(C18:1)和亚油酸(C18:2)占比约10%的棕榈酸(C16:0)以及包括硬脂酸(C18:0)、花生酸(C20:0)烯酸(C20:1)山嵛酸(C22:0)木蜡酸(C24:0)在内其他脂肪酸之和占比约10%。为了揭示栽培花生脂肪酸含量的遗传基础与QTL定位,本研究利用高密度SNP芯片对“SunOleic 97R × NC94022” RIL群体进行了基因分型。构建了包含3141SNP标记的遗传连锁图谱,总遗传图距3051.81 cM并在11个连锁群种鉴定60个与脂肪酸相关QTL位点其表型效应值PVE范围为1.37% ~ 44.92%。值得注意的是,qFAT_A05.1qFAT_A08.1是影响不同脂肪酸组成的重要多效位点。此外,通过对178份花生种质进行基因分型,鉴定出qFAT_A05.1qFAT_A08.1这两个QTL位点共15种单倍型。花生种质的单倍型分析证实了这些QTL位点含油量、油酸、油酸、木蜡酸、棕榈酸和山嵛酸含量密切相关。本研究为筛选理想脂肪酸组的花生基因型提供重要的参考价值



Abstract  

Peanut (Arachis hypogaea L.) is an important oil and edible protein crop. The fatty acid composition not only influences the quality of peanut oil but also impacts flavor, shelf life, and consumer health. Peanut oil comprises approximately 80% oleic acid (C18:1) and linoleic acid (C18:2), 10% palmitic acid (C16:0), and the remaining 10% includes stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0). To unravel the genetic foundation of fatty acid content and delve into QTL localization, we utilized high-density SNP microarrays for genotyping the RIL population of 'SunOleic 97R' × 'NC94022'. A genetic linkage map was constructed with 3141 SNP markers, covering a total genetic distance of 3051.81 cM. We identified 60 quantitative trait loci (QTLs) associated with fatty acids which distributed in 11 linkage group, with phenotypic variance explained (PVE) ranging from 1.37% to 44.92%. Notably, the QTL qFAT_A05.1 and qFAT_A08.1 are multiple-effect loci contributing to various fatty acid compositions. Moreover, we identified 15 haplotypes for the QTL qFAT_A05.1 and qFAT_A08.1 through genotyping 178 peanut germplasms. Haplotypes analysis in natural population confirmed the closely relationship of the QTLs with the content of oil, oleic acid, lignoceric acid, palmitic acid and behenic acid. This study serves as a valuable reference for selecting improved peanut genotypes with superior oil quality and desirable fatty acid composition.

Keywords:  peanut       fatty acid              QTL              genetic map  
Received: 16 May 2024   Online: 21 September 2024  
Fund: 

This research was funded by the National Key Research and Development Program, China (2023YFD1202800), the Guangxi Science and Technology Major Project, China (“Peak Project” of Modern Characteristic Agriculture, GuikeAA23062004), the Key Research and Development Project of Shandong Province, China (2022LZGC007, 2022LZGC022), and the Taishan Scholars Program of Shandong Province, China

About author:  #Correspondence Baozhu Guo, E-mail: Baozhu.Guo@ARS.USDA.GOV; Chuanzhi Zhao, E-mail: chuanzhiz@126.com *These authors contributed equally to this study.

Cite this article: 

Guanghao Wang, Hui Wang, Liangqiong He, Zhuqiang Han, Jiaowen Pan, Huan Zhang, Lei Hou, Xingjun Wang, Baozhu Guo, Chuanzhi Zhao. 2024. Inheritance and QTL mapping identified multi-effects loci for fatty acid related traits in peanut (Arachis hypogaea L.). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.013

Amico A, Wootan M G, Jacobson M F, Leung C, Willett A W. 2021. The demise of artificial trans fat: A history of a public health achievement. Milbank Quarterly, 99, 746-770

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetic, 48, 438-446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetic, 51, 877-884

Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, et al. 2016. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences of the United States of America, 113, 6785-6790

Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, et al. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant, 12, 920-934.

Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli D J, Leal-Bertioli S C, Pandey M K, Vaughn J, Abernathy B, Barkley N A, Hovav R, Burow M, Nayak S N, Chitikineni A, Isleib T G, Holbrook C C, Jackson S A, Varshney R K, Ozias-Akins P. 2017. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Molecular Plant, 10, 309-322.

Clevenger J.P, Korani W , Ozias-Akins P, and Jackson S. 2018. Haplotype-Based Genotyping in Polyploids. Frontiers in Plant Science, 9, 564.

Crupkin M, Zambelli A. 2008. Detrimental impact of trans fats on human health: Stearic acid-rich fats as possible substitutes. Comprehensive Reviews in Food Science and Food Safety, 7, 271-279

Davis J P, Price K M, Dean L L, Sweigart D S, Cottonaro J M, Sanders T H. 2016. Peanut oil stability and physical properties across a range of industrially relevant oleic acid/linoleic acid ratios. Peanut Science, 43, 1-11.

Dean L L, Hendrix K W, Holbrook C C, Sanders T H. 2009. Content of some nutrients in the core of the peanut germplasm collection. Peanut Science, 36, 104-120.

Fretts A M, Mozaffarian D, Siscovick D S, Djousse L, Heckbert S R, King I B, McKnight B, Sitlani C, Sacks F M, Song X, Sotoodehnia N, Spiegelman D, Wallace E R, Lemaitre R N. 2014. Plasma phospholipid saturated fatty acids and incident atrial fibrillation: The cardiovascular health study. Journal of the American Heart Association, 3, e000889.

Gai J Y, Wang J K. 1998. Identification and estimation of a QTL model and its effects. Theoretical and Applied Genetics, 97, 1162-1168.

García M D M, Aguilera García C M, Gil Hernández A. 2006. Importance of lipids in the nutritional treatment of inflammatory diseases. Nutricion Hospitalaria, 21, 28-41, 30-43.

Gorbet D W, Knauft D A. 2000. Registration of ‘SunOleic 97R’ peanut. Crop Science, 40, 1190-1191.

Guo M, Deng L, Gu J, Miao J, Yin J, Li Y, Fang Y, Huang B, Sun Z, Qi F, Dong W, Lu Z, Li S, Hu J, Zhang X, Ren L. 2024. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.). BMC Plant Biology24, 244.

Guo S, Chai S, Guo Y, Shi X, Han F, Qu T, Xing L, Yang Q, Gao J, Gao X, Feng B, Song H, Yang P. 2023. Mapping of major QTL and candidate gene analysis for hull colour in foxtail millet (Setaria italica (L.) P. Beauv.). BMC Genomics, 24, 458.

Huang B Y, Liu H, Fang Y J, Miao L J, Qin L, Sun Z Q, Qi F Y, Chen L, Zhang F Y, Li S Z, Zheng Q H, Shi L, Wu J H, Dong W Z, Zhang X Y. 2023. Identification of oil content QTL on Arahy12 and Arahy16 and development of KASP markers in cultivated peanut (Arachis hypogaea L.). Journal of Integrative Agriculturedoi:10.1016/j.jia.2023.11.010

Hu X H, Zhang S Z, Miao H R, Cui F G, Shen Y, Yang W Q, Xu T T, Chen N, Chi X Y, Zhang Z M, Chen J. 2018. High-Density Genetic Map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Scientific Reports, 8, 5479.

Isleib T G, Pattee H E, Sanders T H, Hendrix K W, Dean L O. 2006. Compositional and sensory comparisons between normal- and high-oleic peanuts. Journal of Agricultural and Food Chemistry, 54, 1759-1763.

Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, and Chen C Y. 2019, Construction of High-Density Genetic Map and Mapping Quantitative Trait Loci for Growth Habit-Related Traits of Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 10, 745.

Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. 2020a. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 133, 37-49.

Liu N, Huang L, Chen W, Wu B, Pandey M K, Luo H, Zhou X, Guo J, Chen H, Huai D, Chen Y, Lei Y, Liao B, Ren X, Varshney R K, Jiang H. 2020b. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genetics, 21, 60.

Liu N, Luo H Y, Huang L, Zhou X J, Chen W G, Wu B, Guo J B, Huai D X, Chen Y N, Lei Y, Liao B S, Jiang H F. 2024. High-resolution mapping through whole-genome resequencing identifies two novel QTLs controlling oil content in peanut. Journal of Integrative Agriculture. doi,https://doi.org/10.1016/j.jia.2024.08.028.

López Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. 2000. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical and Applied Genetics, 101, 1131-1138.

Luo H Y, Xu Z J, Li Z D, Li X P, Lv J W, Ren X P, Huang L, Zhou X J, Chen Y N, Yu J Y, Chen W G, Lei Y, Liao B S, Jiang H F. 2017. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 130, 1635-1648.

Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney R K, Chen X, Liang X. 2018. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Frontiers in Plant Science, 9, 604.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269-283.

Neelakandan A K, Wright D A, Traore S M, Chen X, Spalding M H, He G. 2022. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L.). Frontiers in Genetics, 13, 849961.

Nile S H, Park S W, Research T. 2013. Fatty acid composition and antioxidant activity of groundnut (Arachis hypogaea L.) products. Food Science and Technology Research, 19, 957-962.

O'Byrne D J, Knauft D A, Shireman R B. 1997. Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids, 32, 687-695

Pandey M K, Wang M L, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley N A, Wang J, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2014. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics, 15, 133.

Pattee H E, Isleib T G, Gorbet D W, Moore K M, Lopez Y, Baring M R, Simpson C E. 2002. Effect of the high-oleic trait on roasted peanut flavor in backcross-derived breeding lines. Journal of Agricultural and Food Chemistry, 50, 7362-7365.

Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N, Guo B, Varshney R K. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 8, 794.

Sun X R, Liu L, Zhi X N, Bai J R, Cui Y N, Shu J S, Li J M. 2019. Genetic analysis of tomato internode length via mixed major gene plus polygene inheritance model. Scientia Horticulturae, 246, 759-764.

Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X, Tian M, Feng J, Zhao R, Zheng Z, Zhang X. 2022. QTL mapping of quality traits in peanut using whole-genome resequencing. The Crop Journal, 10, 177-184.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78.

Wang J Y, Gai J Y. 1997. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny. Journal of Genetics and Genomics, 24, 432-440. (in china)

Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2015. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE, 10, e0119454.

Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D J T P B. 2016. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Tropical Plant Biology, 10, 1-17.

Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H. 2005. High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Science and Technology Research, 11, 231-235.

Yang Y Q, Li Y R, Cheng Z S, Su Q, Jin X X, Song Y H, Wang J. 2023. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theoretical and Applied Genetics, 136, 97.

Ye Y J, Wu J Y, Feng L, Ju Y Q, Cai M, Cheng T R, Pan H T, Zhang Q X. 2017. Heritability and gene effects for plant architecture traits of crape myrtle using major gene plus polygene inheritance analysis. Scientia Horticulturae, 225, 335-342.

Zhang H, Dean L, Wang M L, Dang P, Lamb M, Chen C. 2023. GWAS with principal component analysis identify QTLs associated with main peanut flavor-related traits. Frontiers in Plant Science, 14, 1204415.

Zhang M, Gai J Y, Wang Y J. 2001. An expansion of joint segregation analysis of quantitative trait for using P_1, P_2 and DH or RIL populations. Hereditas, 23, 467-470.

Zhang R, Jia G, Diao X. 2023. geneHapR: An R package for gene haplotypic statistics and visualization. BMC Bioinformatics, 24, 199.

Zhang Y, Liu Z, Wang X, Li Y, Li Y, Gou Z, Zhao X, Hong H, Ren H, Qi X, Qiu L. 2022. Identification of genes for drought resistance and prediction of gene candidates in soybean seedlings based on linkage and association mapping. The Crop Journal, 10, 830-839.

Zhao H, Tian R, Xia H, Li C, Li G, Li A, Zhang X, Zhou X, Ma J, Huang H, Zhang K, Thudi M, Ma C, Wang X, Zhao C. 2022. High-Density genetic variation map reveals key candidate loci and genes associated with important agronomic traits in peanut. Frontiers in Genetics, 13, 845602.

Zhou X, Luo H, Yu B, Huang L, Liu N, Chen W, Liao B, Lei Y, Huai D, Guo P, Li W, Guo J, Jiang H. 2022. Genetic dissection of fatty acid components in the Chinese peanut (Arachis hypogaea L.) mini-core collection under multi-environments. PLoS ONE, 17, e0279650.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51, 865-876. 

No related articles found!
No Suggested Reading articles found!