Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The conserved Xanthomonas effector XopM targets allene oxide synthase OsAOS3 and interferes with jasmonate-mediated defense in rice
Ying Li, Linlin Liu, Qi Wang, Yong Wang, Jiali Yan, Moein Khojasteh, Syed MA Shah, Zhengyin Xu#, Gongyou Chen#

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

稻黄单胞菌(Xanthomonas oryzae pv. oryzae, Xoo引起水稻白叶枯病(Bacterial blight, BB)危害水稻安全生产的全球性重要病害。Xoo利用III型分泌系统(type III secretion system, T3SS)分泌的效应蛋白发挥毒力,造成病害的发生发展和产量损失。XopM是黄单胞菌中保守的T3SS效应物之一,然而,XopM的毒功能在很大程度上是未知的。在本研究中,我们构建了PH-PthXo1菌株用于评估单一non-TALE的毒力贡献。致病性测定结果表明XopM对水稻的Xoo致病力显著贡献。为了明确XopM在寄主水稻中的靶标进而阐述其致病机理,我们利用酵母双杂交鉴定到一个茉莉酸生物合成的关键酶丙二烯氧化物合酶(allene oxide synthase, OsAOS3)与XopM相互作用。进一步地,通过免疫共沉淀(co-immunoprecipitation, CoIP)、蛋白下拉实验(Pull-down)、分裂荧光素酶互补(split luciferase complementation, SLC)以及荧光双分子(bimolecular fluorescence complementation, BiFC)互补实验证明了XopMOsAOS3相互作用。随后,我们发现Xoo侵染水稻后,OsAOS33OsAOS同源基因(OsAOS1/2/4)均可被诱导上调表达,且在侵染早期2 h时达到顶峰随后下降至正常水平此外,利用CRISPR/Cas9技术构建了OsAOS3突变体植株,发现OsAOS3基因敲除突变体在侵染和非侵染Xoo情况下JA积累显著减少,对XooXocX. oryzae pv. oryzicola抗性显著降低;与野生型水稻日本晴相比,OsAOS3突变体中JA相关的防御基因显著下调,这些结果表明OsAOS3参与JA生物合成且正调控JA介导的水稻免疫。JA含量测定结果表明,携带xopM基因菌株能降低水稻中JA含量以及JA相关抗病基因的转录水平。综上所述研究结果揭示了一种新的毒力策略,即XopM通过劫持OsAOS3干扰JA介导的防御,从而导致水稻免疫力的抑制。



Abstract  

Bacterial blight (BB) of rice caused by the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo) is a disease of global importance. Xoo utilizes the type III secretion system (T3SS) and its effectors for virulence, and XopM is a conserved T3SS effector in Xanthomonas spp. However, the virulence function of XopM is largely unknown. In this study, we show that XopM contributes to Xoo virulence in rice. We demonstrate that XopM interacts with allene oxide synthase OsAOS3, a key enzyme involved in jasmonic acid (JA) biosynthesis. The expression levels of OsAOS3 and three homologues of OsAOS were elevated after Xoo infection. Knockout mutants of OsAOS3 exhibited decreased JA accumulation and reduced resistance to Xoo and X. oryzae pv. oryzicola. Moreover, JA-related defense genes were downregulated in osaos3 mutants during Xoo infection. Based on our results, we propose a model showing how XopM hijacks OsAOS3 to interfere with JA-mediated defenses, leading to a suppression of rice immunity. Our findings reveal a novel virulence strategy where Xanthomonas pathogens interfere with the JA pathway and modulate the host defense response.

Keywords:  Xanthomonas       XopM        allene oxide synthase        jasmonic acid        plant immunit  
Online: 22 August 2024  
Fund: 

The authors thank Dr. Bing Yang (University of Missouri, USA) for providing the plasmids needed for the CRISPR/Cas9 system. This work was supported by the National Natural Science Foundation of China (31830072 and 32102147). 

About author:  #Correspondence Gongyou Chen, E-mail: gyouchen@sjtu.edu.cn; Zhengyin Xu, E-mail: xuzy2015@sjtu.edu.cn

Cite this article: 

Ying Li, Linlin Liu, Qi Wang, Yong Wang, Jiali Yan, Moein Khojasteh, Syed MA Shah, Zhengyin Xu, Gongyou Chen. 2024. The conserved Xanthomonas effector XopM targets allene oxide synthase OsAOS3 and interferes with jasmonate-mediated defense in rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.08.018

Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht U C, Wurzinger B. 2022. Organelles and phytohormones: a network of interactions in plant stress responses. Journal of Experimental Botany, 73, 7165-7181.

Boller T, He S Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 324, 742-744.

Campos M L, Kang J H, Howe G A. 2014. Jasmonate-triggered plant immunity. Journal of Chemical Ecology, 40, 657-675.

Chen J, Zhao Y, Luo X, Hong H, Yang T, Huang S, Wang C, Chen H, Qian X, Feng M, Chen Z, Dong Y, Ma Z, Li J, Zhu M, He S Y, Dinesh-Kumar S P, Tao X. 2023. NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature, 613, 145-152.

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527-532.

Deb S, Ghosh P, Patel H K, Sonti R V. 2020. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses. The Plant Journal, 104, 332-350.

Deslandes L, Rivas S. 2012. Catch me if you can: bacterial effectors and plant targets. Trends in Plant Science, 17, 644-655.

Ding P T, Ding Y L. 2020. Stories of Salicylic Acid: A Plant Defense Hormone. Trends in Plant Science, 25, 549-565.

Dodds P N, Rathjen J P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539-548.

Dou D L, Zhou J M. 2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe, 12, 484-495.

Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S. 2009. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 22, 96-106.

Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen J P, Solano R. 2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biology, 12, e1001792.

Gomi K, Satoh M, Ozawa R, Shinonaga Y, Sanada S, Sasaki K, Matsumura M, Ohashi Y, Kanno H, Akimitsu K, Takabayashi J. 2010. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L. The Plant Journal, 61, 46-57.

Guttman D S, Vinatzer B A, Sarkar S F, Ranall M V, Kettler G, Greenberg J T. 2002. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science, 295, 1722-1726.

Haga K, Iino M. 2004. Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant and Cell Physiology, 45, 119-128.

Hillmer R A, Tsuda K, Rallapalli G, Asai S, Truman W, Papke M D, Sakakibara H, Jones J D G, Myers C L, Katagiri F. 2017. The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLoS Genetics, 13, e1006639.

Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-Mediated Phosphorylation on WRKY72 Releases Its Suppression on Jasmonic Acid Biosynthesis and Bacterial Blight Resistance. iScience, 16, 499-510.

Hu Y Z, Ding Y X, Cai B Y, Qin X H, Wu J N, Yuan M H, Wan S W, Zhao Y, Xin X F. 2022. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe, 30, 518-529.e516.

Hui S G, Hao M Y, Liu H B, Xiao J H, Li X H, Yuan M, Wang S P. 2019. The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochemical and Biophysical Research Communications, 508, 1062-1066.

Hui S G, Ke Y G, Chen D, Wang L, Li Q Q, Yuan M. 2023. Rice microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 modules regulate defenses against bacteria. Plant Physiology, 192, 2537-2553.

Ji H T, Liu D L, Zhang Z X, Sun J W, Han B, Li Z Y. 2020. A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice. The Plant Journal, 104, 1054-1072.

Ji Z Y, Ji C H, Liu B, Zou L F, Chen G Y, Yang B. 2016. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7, 13435.

Jones J D, Dangl J L. 2006. The plant immune system. Nature, 444, 323-329.

Kim J H, Castroverde C D M, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr S K, Wildermuth M C, Chen T, MacMicking J D, He S Y. 2022. Increasing the resilience of plant immunity to a warming climate. Nature, 607, 339-344.

Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. 2010. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signaling and Behavior, 5, 1336-1341.

Kuroda H, Oshima T, Kaneda H, Takashio M. 2005. Identification and functional analyses of two cDNAs that encode fatty acid 9-/13-hydroperoxide lyase (CYP74C) in rice. Bioscience, Biotechnology and Biochemistry, 69, 1545-1554.

Li C, Xu M, Cai X, Han Z G, Si J P, Chen D H. 2022. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. International Journal of Molecular Sciences, 23, 3945.

Li Y R, Zou H S, Che Y Z, Cui Y P, Guo W, Zou L F, Chatterjee S, Biddle E M, Yang C H, Chen G Y. 2011. A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions, 24, 1086-1101.

Lin J S, Lai E M. 2017. Protein-Protein Interactions: Yeast Two-Hybrid System. Methods in Molecular Biology, 1615, 177-187.

Long J Y, Song C F, Yan F, Zhou J H, Zhou H B, Yang B. 2018. Non-TAL Effectors From Xanthomonas oryzae pv. oryzae Suppress Peptidoglycan-Triggered MAPK Activation in Rice. Frontiers in Plant Science, 9, 1857.

Major I T, Yoshida Y, Campos M L, Kapali G, Xin X F, Sugimoto K, de Oliveira Ferreira D, He S Y, Howe G A. 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytologist, 215, 1533-1547.

Mei C S, Qi M, Sheng G Y, Yang Y N. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19, 1127-1137.

Meng F W, Yang C, Cao J D, Chen H, Pang J H, Zhao Q Q, Wang Z Y, Fu Z Q, Liu J. 2020. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology, 62, 1552-1573.

Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques M A, Fischer-Le Saux M. 2017. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Molecular Ecology, 26, 5939-5952.

Ngou B P M, Jones J D G, Ding P. 2022. Plant immune networks. Trends in Plant Science, 27, 255-273.

Pan X Y, Xu S, Wu J, Duan Y B, Zheng Z T, Wang J X, Song X S, Zhou M G. 2018. Ankyrin-Like Protein AnkB Interacts with CatB, Affects Catalase Activity, and Enhances Resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to Phenazine-1-Carboxylic Acid. Applied and Environmental Microbiology, 84, e02145-17.

Peng Z, Hu Y, Zhang J, Huguet-Tapia J C, Block A K, Park S, Sapkota S, Liu Z H, Liu S Z, White F F. 2019. Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 116, 20938-20946.

Pieterse C M, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489-521.

Robert-Seilaniantz A, Grant M, Jones J D. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343.

Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen V P, Silva-Martins G, Nomura K, Brassard S, Bolaji A, He S Y, Moffett P. 2022. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe, 30, 489-501.e484.

Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud M F, Fischer-Le Saux M, Portier P, Jacques M A, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël L D. 2015. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics, 16, 975.

Ruan J J, Zhou Y X, Zhou M L, Yan J, Khurshid M, Weng W F, Cheng J P, Zhang K X. 2019. Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences, 20, 2479.

Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U. 2012. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytologist, 195, 894-911.

Sinha D, Gupta M K, Patel H K, Ranjan A, Sonti R V. 2013. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS One, 8, e75867.

Song C F, Yang B. 2010. Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 23, 893-902.

Spoel S H, Dong X N. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe, 3, 348-351.

Teper D, Sunitha S, Martin G B, Sessa G. 2015. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signaling and Behavior, 10, e1064573.

Thomma B P, Eggermont K, Penninckx I A, Mauch-Mani B, Vogelsang R, Cammue B P, Broekaert W F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 95, 15107-15111.

Tuttle A R, Trahan N D, Son M S. 2021. Growth and Maintenance of Escherichia coli Laboratory Strains. Current Protocols, 1, e20.

Tyler B M. 2017. The fog of war: How network buffering protects plants' defense secrets from pathogens. PLoS Genetics, 13, e1006713.

Wang L L, Xu G J, Li L H, Ruan M Y, Bennion A, Wang G L, Li R, Qu S H. 2023. The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 120, e2211102120.

Wang S Z, Li S, Wang J Y, Li Q, Xin X F, Zhou S, Wang Y P, Li D Y, Xu J Q, Luo Z Q, He S Y, Sun W X. 2021. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nature Communications, 12, 5479.

Wang S F, Sun J H, Fan F G, Tan Z Y, Zou Y M, Lu D P. 2016. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure. Science China-Life Sciences, 59, 897-905.

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021-1058.

White F F, Potnis N, Jones J B, Koebnik R. 2009. The type III effectors of Xanthomonas. Molecular Plant Pathology, 10, 749-766.

Xu Z Y, Xu X M, Gong Q, Li Z Y, Li Y, Wang S, Yang Y Y, Ma W X, Liu L Y, Zhu B, Zou L F, Chen G Y. 2019. Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice. Molecular Plant, 12, 1434-1446.

Xu Z Y, Xu X M, Wang Y J, Liu L L, Li Y, Yang Y, Liu L Y, Zou L F, Chen G Y. 2022. A varied AvrXa23-like TALE enables the bacterial blight pathogen to avoid being trapped by Xa23 resistance gene in rice. Journal of Advanced Research, 42, 263-272.

Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant and Cell Physiology, 53, 2060-2072.

Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T. 2013. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe, 13, 347-357.

Yan C, Xie D X. 2015. Jasmonate in plant defence: sentinel or double agent? Plant Biotechnology Journal, 13, 1233-1240.

You Q Y, Zhai K R, Yang D L, Yang W B, Wu J N, Liu J Z, Pan W B, Wang J J, Zhu X D, Jian Y K, Liu J Y, Zhang Y Y, Deng Y W, Li Q, Lou Y G, Xie Q, He Z H. 2016. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host Microbe, 20, 758-769.

You X M, Zhu S S, Sheng H W, Liu Z, Wang D, Wang M, Xu X, He F, Fang H, Zhang F, Wang D B, Hao Z Y, Wang R Y, Xiao Y H, Wan J M, Wang G L, Ning Y S. 2023. The rice peroxisomal receptor PEX5 negatively regulates resistance to rice blast fungus Magnaporthe oryzae. Cell Reports, 42, 113315.

Yu G, Derkacheva M, Rufian J S, Brillada C, Kowarschik K, Jiang S S, Derbyshire P, Ma M M, DeFalco T A, Morcillo R J L, Stransfeld L, Wei Y L, Zhou J M, Menke F L H, Trujillo M, Zipfel C, Macho A P. 2022. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. The EMBO Journal, 41, e107257.

Yuan M H, Jiang Z Y, Bi G Z, Nomura K, Liu M H, Wang Y P, Cai B Y, Zhou J M, He S Y, Xin X F. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 592, 105-109.

Zhai K R, Deng Y W, Liang D, Tang J, Liu J, Yan B X, Yin X, Lin H, Chen F D, Yang D D, Xie Z, Liu J Y, Li Q, Zhang L, He Z H. 2019. RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Molecular Cell, 74, 996-1009.e1007.

Zhang R X, Ge S C, He J , Li S C, Hao Y H, Du H, Liu Z M, Cheng R, Feng Y Q, Xiong L Z, Li C Y, Hetherington A M, Liang Y K. 2019. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytologist, 222, 335-348.

Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 42, 10903-10914.

 

No related articles found!
No Suggested Reading articles found!