Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Precise quantification of skeletal muscle fibers reveals the physiological basis for growth rate discrepancies in broilers

Shuang Gu1,2, Chaoyi Wang1,2, Qiang Huang1,2, Qiu-lian Wang1,2, Junying Li1,2,3, Congjiao Sun1,2,3, Chaoliang Wen1,2,3, Ning Yang1,2,3,*

1 State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China

2 National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China

3 Sanya Institute of China Agricultural University, Hainan 572025, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

肌纤维作为骨骼肌的基本结构和功能单位,其组织特性对于畜禽产肉量和肉品质的提升,以及肌肉发育研究具有重要意义。传统肌肉发育研究中通常以切片局部图像测得的肌纤维横截面积和密度等指标来评估肌纤维组织学特性,然而骨骼肌内肌纤维的总数是衡量其发育水平的关键。对于肌纤维总数来说,传统的定量方法通常是以局部数据代替或推算整体,这存在精度不高、效率低等局限。针对这一难题,本课题组前期建立了一套成熟的切片制作流程,并基于深度学习技术开发了肌纤维自动量化工具MyoV,能够对骨骼肌肌纤维进行大批量且精准的量化分析。基于此,本研究旨在精确测定不同生长速度肉鸡胸大肌中肌纤维总数,探索家禽肌肉发育的生理基础,并为畜禽肌肉研究提供宝贵数据。

试验选取慢速生长型(SL)、中速生长型(ML)和快速生长型(FL)肉鸡的种蛋进行孵化,从14胚龄开始,每日测量三组鸡胚的体重、胸重和腿重,直至19胚龄。孵化完成后,在出雏当天、7日龄和35日龄分别选取公母各201020只鸡进行生长性能测定,并在7日龄和35日龄进行肌纤维组织学测定。结果发现,从胚胎期至生长期,FL组肉鸡比MLSL生长更快,胸大肌的全景切片结果表明,FLML组的肌纤维总数显著高于SL组(P < 0.01)。在7日龄时,FLMLSL组的胸大肌肌纤维总数分别是693,568.00 ± 54,169.80652,122.00 ± 65,822.60539,778.57 ± 40,722.94根;在35日龄时三组肉鸡的胸大肌肌纤维总数分别是663,014.93 ± 58,801.11645,784.76 ± 80,204.34507,280.29 ± 98,092.16根。肌纤维横截面积的组间差异结果与肌纤维总数的结果一致。生长性能与肌纤维组织学特性的相关性分析显示,肉鸡体重与胸大肌肌纤维总数的相关系数为0.73-0.89,与胸大肌肌纤维横截面积的相关系数为0.78-0.87。

快速生长型肉鸡骨骼肌包含的肌纤维数量更多,且出雏后肌纤维肥大速度更快,这是肉鸡快速发育的生理基础。本研究首次实现了对不同生长速度肉鸡生长性能及肌纤维总数的精确量化,填补了家禽肌纤维总数测定数据的空白,也为进一步深入研究肌纤维发育提供了重要数据支持



Abstract  

Skeletal muscle is composed of multinucleated muscle fibers, which play a crucial role in determining the quality of meat products in livestock. Quantifying the total number of muscle fibers (TNM) is essential for understanding muscle composition, yet remains challenging in poultry, particularly due to the size of the livestock that complicates the preparation of tissue sections for analysis and renders the counting process laborious. Our previous study developed an automatic muscle fiber quantification tool powered by deep learning, named MyoV, which has addressed this bottleneck. This study aimed to employ the tool for the accurate quantification of the TNM in the pectoral muscles of slow-growing (SL), medium-growing (ML), and fast-growing (FL) broilers. Results showed that FL exhibited higher growth performance compared to ML and SL from embryonic to rearing stages. Processing of whole slide images of pectoral muscle revealed significantly higher TNM in FL and ML than in SL (P < 0.01). The TNM of FL, ML and SL were 693,568.00 ± 54,169.80, 652,122.00 ± 65,822.60 and 539,778.57±40,722.94 at 7 days of age (D7), respectively. And the TNM at D35 were 663,014.93±58,801.11, 645,784.76±80,204.34 and 507,280.29±98,092.16 of FL, ML and SL. Differences in cross-sectional area (CSA) of muscle fibers among the three groups were consistent with TNM results. Correlation analysis showed a correlation coefficient of 0.73-0.89 between body weight (BW) and TNM and a correlation coefficient of 0.78-0.87 between BW and CSA. These findings directly indicate that the number of muscle fibers in broilers is an important foundation for their rapid growth and development. This study precisely quantifies the muscle fiber number of important skeletal muscle in poultry for the first time, providing the direct evidence for the physiological basis of rapid development in broilers and offering important data support for further in-depth researches on muscle fiber development.

Keywords:  broiler       growth performance              precision quantification              total number of muscle fiber  
Online: 20 August 2024  
Fund: This work was supported by the Key Research and Development Program of Hainan province (ZDYF2023XDNY036) and the National Key Research and Development Program of China (2022YFF1000204).
About author:  Shuang Gu, E-mail: 13592566171@163.com; Correspondence Ning Yang, Tel: +86-010-62731351, E-mail: nyang@cau.edu.cn

Cite this article: 

Shuang Gu, Chaoyi Wang, Qiang Huang, Qiu-lian Wang, Junying Li, Congjiao Sun, Chaoliang Wen, Ning Yang. 2024. Precise quantification of skeletal muscle fibers reveals the physiological basis for growth rate discrepancies in broilers. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.08.008

Ahmadipour B, Khajali F. 2019. Expression of antioxidant genes in broiler chickens fed nettle (Urtica dioica) and its link with pulmonary hypertension. Animal Nutrition, 5, 264-269.

Buzała M, Janicki B, Czarnecki R. 2015. Consequences of different growth rates in broiler breeder and layer hens on embryogenesis, metabolism and metabolic rate: A review. Poultry Science, 94, 728-733.

Cheng H, Song S, Kim G D. 2021. Frozen/thawed meat quality associated with muscle fiber characteristics of porcine longissimus thoracis et lumborum, psoas major, semimembranosus, and semitendinosus muscles. Scientific Reports, 11, 13354.

Cheng S, Liu S, Yu J, Rao G, Xiao Y, Han W, Zhu W, Lv X, Li N, Cai J, Wang Z, Feng X, Yang F, Geng X, Ma J, Li X, Wei Z, Zhang X, Quan T, Zeng S, Chen L, Hu J, Liu X. 2021. Robust whole slide image analysis for cervical cancer screening using deep learning. Nature Communications, 12, 5639.

Chodová D, Tůmová E, Ketta M, Skřivanová V. 2021. Breast meat quality in males and females of fast-, medium- and slow-growing chickens fed diets of 2 protein levels. Poultry Science, 100, 100997.

De Lima V A, Ceballos M C, Gregory N G, Da C M. 2019. Effect of different catching practices during manual upright handling on broiler welfare and behavior. Poultry Science, 98, 4282-4289.

Dormoy-Raclet V, Cammas A, Celona B, Lian X J, van der Giessen K, Zivojnovic M, Brunelli S, Riuzzi F, Sorci G, Wilhelm B T, Di Marco S, Donato R, Bianchi M E, Gallouzi I E. 2013. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications, 4, 2388.

Duangnumsawang Y, Zentek J, Vahjen W, Tarradas J, Goodarzi B F. 2022. Alterations in bacterial metabolites, cytokines, and mucosal integrity in the caecum of broilers caused by feed additives and host-related factors. Frontiers in Physiology, 13, 935870.

Fan L, Wang Y, Jiang N, Chen M, Gao L, Li K, Gao Y, Cui H, Pan Q, Liu C, Zhang Y, Wang X, Qi X. 2020. Novel variant infectious bursal disease virus suppresses Newcastle disease vaccination in broiler and layer chickens. Poultry Science, 99, 6542-6548.

Gu J M, Wang D J, Peterson J M, Shintaku J, Liyanarachchi S, Coppola V, Frakes A E, Kaspar B K, Cornelison D D, Guttridge D C. 2016. An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and  Myoblasts Promotes Muscle Growth in Neonates. Developmental Cell, 36, 215-224.

Gu S, Wen C, Li J, Liu H, Huang Q, Zheng J, Sun C, Yang N. 2022. Temporal expression of myogenic regulatory genes in different chicken breeds during embryonic development. International Journal of Molecular Sciences, 23, 10115.

Gu S, Wen C, Xiao Z, Huang Q, Jiang Z, Liu H, Gao J, Li J, Sun C, Yang N. 2024. MyoV: A deep learning-based tool for the automated quantification of muscle fibers. Briefings in Bioinformatics, 25, bbad528.

Hegazy A, Yehia N, Hassan A, El-Saadony M T, Aboelenin S M, Soliman M M, Tolba H. 2021. The potency of newly development H5N8 and H9N2 avian influenza vaccines against the isolated strains in laying hens from Egypt during 2019. Saudi Journal of Biological Sciences, 28, 5310-5316.

Hollandi R, Szkalisity A, Toth T, Tasnadi E, Molnar C, Mathe B, Grexa I, Molnar J, Balind A, Gorbe M, Kovacs M, Migh E, Goodman A, Balassa T, Koos K, Wang W, Caicedo J C, Bara N, Kovacs F, Paavolainen L, Danka T, Kriston A, Carpenter A E, Smith K, Horvath P. 2020. NucleAIzer: A parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Systems, 10, 453-458.

Huo W, Weng K, Li Y, Zhang Y, Zhang Y, Xu Q, Chen G. 2022. Comparison of muscle fiber characteristics and glycolytic potential between slow- and fast-growing broilers. Poultry Science, 101, 101649.

Ju X, Liu Y, Shan Y, Ji G, Zhang M, Tu Y, Zou J, Chen X, Geng Z, Shu J. 2021. Analysis of potential regulatory LncRNAs and CircRNAs in the oxidative myofiber and glycolytic myofiber of chickens. Scientific Reports, 11, 20861.

Kermany D S, Goldbaum M, Cai W, Valentim C, Liang H, Baxter S L, Mckeown A, Yang G, Wu X, Yan F, Dong J, Prasadha M K, Pei J, Ting M, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu V, Wen C, Zhang E D, Zhang C L, Li O, Wang X, Singer M A, Sun X, Xu J, Tafreshi A, Lewis M A, Xia H, Zhang K. 2018. Identifying medical diagnoses and treatable diseases by Image-Based deep learning. Cell, 172, 1122-1131.

Kim D H, Choi Y M, Lee J, Shin S, Kim S, Suh Y, Lee K. 2022. Differential expression of MSTN isoforms in muscle between broiler and layer chickens. Animals, 12, 539.

Kim H, Kwon Y T, Zhu C, Wu F, Kwon S, Yeo W H, Choo H J. 2021. Real-Time functional assay of volumetric muscle loss injured mouse masseter muscles via nanomembrane electronics. Advanced Science, 8, e2101037.

Kimura S, Yoshioka K. 2014. Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation. Scientific Reports, 4, 5066.

Kritikaki E, Asterling R, Ward L, Padget K, Barreiro E, Simoes D. 2021. Exercise Training-Induced extracellular matrix protein adaptation in locomotor muscles: A systematic review. Cells, 10, 1022.

Leskovec J, Levart A, Perić L, Đukić Stojčić M, Tomović V, Pirman T, Salobir J, Rezar V. 2019. Antioxidative effects of supplementing linseed oil-enriched diets with  α-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat  quality in broilers. Poultry Science, 98, 6733-6741.

Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G, Zhao R, Jia B, Zeng L, Guo J, Zhao L, Zhao H, Lv C, Xu K, Cheng W, Li H, Zhao H Y, Wang W, Wei H J. 2016. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Scientific Reports, 6, 33675.

Li M, Zhang N, Zhang W, Hei W, Cai C, Yang Y, Lu C, Gao P, Guo X, Cao G, Li B. 2021. Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle. BMC Genomics, 22, 320.

Ohtsuki M, Nishimura A, Kato T, Sokejima S, Shibata T, Okada H, Nagao-Nishiwaki R, Sudo A. 2019. Relationships between body mass index, lifestyle habits, and locomotive syndrome in young- and middle-aged adults: A cross-sectional survey of workers in Japan. Journal of Occupational Health, 61, 311-319.

Peng M, Li S, He Q, Zhao J, Li L, Ma H. 2018. Proteomics reveals changes in hepatic proteins during chicken embryonic development: An alternative model to study human obesity. BMC Genomics, 19, 29.

Picchiarelli G, Demestre M, Zuko A, Been M, Higelin J, Dieterlé S, Goy M A, Mallik M, Sellier C, Scekic-Zahirovic J, Zhang L, Rosenbohm A, Sijlmans C, Aly A, Mersmann S, Sanjuan-Ruiz I, Hübers A, Messaddeq N, Wagner M, van Bakel N, Boutillier A L, Ludolph A, Lagier-Tourenne C, Boeckers T M, Dupuis L, Storkebaum E. 2019. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nature Neuroscience, 22, 1793-1805.

Porporato P E, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi V F, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith R G, Sun Y, Geuna S, Graziani A. 2013. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. Journal of Clinical Investigation, 123, 611-622.

Qi K, Men X, Wu J, Xu Z. 2019. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC Microbiology, 19, 181.

Raheem M A, Jiangang H, Yin D, Xue M, Rehman K U, Rahim M A, Gu Y, Fu D, Song X, Tu J, Khan I M, Tipu M Y, Qi K. 2021. Response of lymphatic tissues to natural feed additives, curcumin (Curcuma longa) and black cumin seeds (Nigella sativa), in broilers against Pasteurella multocida. Poultry Science, 100, 101005.

Roman W, Martins J P, Carvalho F A, Voituriez R, Abella J, Santos N C, Cadot B, Way M, Gomes E R. 2017. Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nature Cell Biology, 19, 1189-1201.

Scheuermann G N, Bilgili S F, Tuzun S, Mulvaney D R. 2004. Comparison of chicken genotypes: Myofiber number in pectoralis muscle and myostatin ontogeny. Poultry Science, 83, 1404-1412.

Shen H, Grimston S, Civitelli R, Thomopoulos S. 2015. Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. Journal of Bone and Mineral Research, 30, 596-605.

Singh A J, Chang C N, Ma H Y, Ramsey S A, Filtz T M, Kioussi C. 2018. FACS-Seq analysis of Pax3-derived cells identifies non-myogenic lineages in the embryonic forelimb. Scientific Reports, 8, 7670.

Sultana N, Islam R, Bhakta S, Saha J A, Islam S S, Hashem M A. 2023. Role of Clove and Tulsi on broiler health and meat production. Saudi Journal of Biological Sciences, 30, 103654.

Tavaniello S, Slawinska A, Sirri F, Wu M, De Marzo D, Siwek M, Maiorano G. 2022. Performance and meat quality traits of slow-growing chickens stimulated in ovo with galactooligosaccharides and exposed to heat stress. Poultry Science, 101, 101972.

Wang L, Chen M, Xu M, Li J, Feng P, He R, Zhu Y, Li H, Lin J, Zhang C. 2018. Ratio of creatine kinase to alanine aminotransferase as a biomarker of acute liver injury in dystrophinopathy. Disease Markers, 2018, 6484610.

Wang Q, Qiu X, Liu T, Ahn C, Horowitz J F, Lin J D. 2022. The hepatokine TSK maintains myofiber integrity and exercise endurance and contributes to muscle regeneration. JCI Insight, 7, e154746.

Wen C, Jiang X, Ding L, Wang T, Zhou Y. 2017. Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast- and slow-growing broilers. Scientific Reports, 7, 1924.

Weng K, Huo W, Li Y, Zhang Y, Zhang Y, Chen G, Xu Q. 2022. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers. Poultry Science, 101, 101537.

Wu S, Chen X, Li T, Ren H, Zheng L, Yang X. 2020. Changes in the gut microbiota mediate the differential regulatory effects of two glucose oxidases produced by Aspergillus niger and Penicillium amagasakiense on the meat quality and growth performance of broilers. Journal of Animal Science and Biotechnology, 11, 73.

Xia J, Fan H, Chang T, Xu L, Zhang W, Song Y, Zhu B, Zhang L, Gao X, Chen Y, Li J, Gao H. 2017. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Scientific Reports, 7, 42048.

Xiong Y, Fan L, Hao Y, Cheng Y, Chang Y, Wang J, Lin H, Song G, Qu Y, Lei F. 2020. Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds. PLoS Genetics, 16, e1009270.

Yair R, Shahar R, Uni Z. 2013. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties. Journal of Animal Science, 91, 2784-2793.

Yang Y, He H, Wang J, Chen L, Xu Y, Ge C, Li S. 2023. Blood quality evaluation via on-chip classification of cell morphology using a deep learning algorithm. Lab On a Chip, 23, 2113-2121.

Yao Y, Norris E H, Mason C E, Strickland S. 2016. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nature Communications, 7, 11415.

Yu Q, Tian X, Shao L, Xu L, Dai R, Li X. 2018. Label-free proteomic strategy to compare the proteome differences between longissimus lumborum and psoas major muscles during early postmortem periods. Food Chemistry, 269, 427-435.

Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. 2020. MicroRNA-7 targets the KLF4 gene to regulate the proliferation and differentiation of chicken primary myoblasts. Frontiers in Genetics, 11, 842.

Zhao G P, Cui H X, Liu R R, Zheng M Q, Chen J L, Wen J. 2011. Comparison of breast muscle meat quality in 2 broiler breeds. Poultry Science, 90, 2355-2359.

Zhao W, Pan J, Wang X, Wu Y, Bauman W A, Cardozo C P. 2008. Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone. Endocrinology, 149, 5449-5460.

Zuidhof M J. 2020. Multiphasic poultry growth models: Method and application. Poultry Science, 99, 5607-5614.


No related articles found!
No Suggested Reading articles found!