Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and fine mapping of a major QTL, qGPC4D, for grain protein content using wheat–Aegilops tauschii introgression lines
Yijun Wang*, Jinhao Han*, Tenglong Zhang, Mengjia Sun, Hongyu Ren, Cunyao Bo, Yuqing Diao, Xin Ma, Hongwei Wang, Xiaoqian Wang#

National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural UniversityTai’an 271018China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  小麦是一种重要的粮食作物,对粮食安全和人类健康至关重要。提高小麦品质已成为育种家满足市场日益增长的需求的重要任务。本研究以高产小麦品种济麦22和粗山羊草Y215为亲本构建了一套小麦-粗山羊草渐渗系。利用55K SNP芯片鉴定群体基因型并筛选出2727个高质量的SNP,同时测定两个环境下的籽粒品质相关性状。通过QTL分析鉴定出8个与籽粒蛋白质含量、淀粉含量和湿面筋含量相关的QTL。其中,qGPC4D为具有环境稳定性的主效QTL,其有利等位基因来自粗山羊草Y215。随后,利用渐渗系进一步精细定位,将qGPC4D缩小到9.88 Mb的物理区间内,并开发了三个连锁的KASP标记。本试验为小麦优质育种提供了重要的候选基因、优良的渐渗系和连锁的KASP标记。

Abstract  

Wheat is a staple cereal crop that is crucial for food security and human health.  Improving wheat quality has become an essential task for breeders to meet escalating market demand.  In this study, a set of wheat-Aegilops tauschii introgression lines was developed from a cross between the high-yielding wheat variety Jimai 22 and Ae. tauschii Y215.  A high-density genetic map containing 2,727 single nucleotide polymorphisms (SNPs) was constructed using a 55K SNP array to conduct quantitative trait loci (QTL) analysis for grain quality-related traits.  Eight QTL were identified for grain protein content (GPC), starch content, and wet gluten content in the two environments.  Among them, a major and environmentally stable QTL, qGPC4D, for GPC was identified, with favorable alleles contributed by Ae. tauschii Y215.  Subsequently, qGPC4D was narrowed down to a 9.88 Mb physical interval through further fine mapping utilizing the introgression lines.  Additionally, three linked SNP of qGPC4D were converted into high-throughput kompetitive allele-specific PCR (KASP) markers and validated in the introgression population.  These findings offer promising candidate genes, elite introgression lines, and KASP markers for wheat high-quality breeding. 

Keywords:  wheat        Aegilops tauschii        protein content        QTL        KASP  
Online: 19 July 2024  
Fund: This work was supported by Shandong Province Agricultural Fine Seeds Project, China (2022LZGC005), the National Natural Science Foundation of China (31901491 and 32030081), and the Young and Innovative Team Plan of Shandong Higher Education Institutions, China (2023KJ336).

Cite this article: 

Yijun Wang, Jinhao Han, Tenglong Zhang, Mengjia Sun, Hongyu Ren, Cunyao Bo, Yuqing Diao, Xin Ma, Hongwei Wang, Xiaoqian Wang. 2024. Identification and fine mapping of a major QTL, qGPC4D, for grain protein content using wheat–Aegilops tauschii introgression lines. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.07.029

Belanger F C, Kriz A L. 1991. Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics, 129, 863-872.

Bo C, Fan Z, Ma X, Li A, Wang H, Kong L, Wang X. 2022. Identification and introgression of a novel HMW-GS gene from Aegilops tauschii. Agronomy, 12, 2709.

Borrill P, Ramirez-Gonzalez R, Uauy C. 2016. expVIP: a customizable RNA-seq data analysis and visualization platform  Plant Physiology, 170, 2172-2186.

Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’amore R, Allen A M, Mckenzie N, Kramer M, Kerhornou A, Bolser D. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491, 705.

Cox T S, Sorrells M, Bergstrom G, Sears R, Gill B, Walsh E, Leath S, Murphy J. 1994. Registration of KS92WGRC21 and KS92WGRC22 hard red winter wheat germplasms resistant to wheat spindle-streak mosaic virus, wheat soilborne mosaic virus, and powdery mildew. Crop Science, 34, 546-546.

Cox T S, Wu J, Wang S, Cai J, Zhong Q, Fu B. 2017. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. The Crop Journal, 5, 355-362.

Gaurav K, Arora S, Silva P, Sánchez-Martín J, Horsnell R, Gao L, Brar G S, Widrig V, John Raupp W, Singh N, Wu S, Kale S M, Chinoy C, Nicholson P, Quiroz-Chávez J, Simmonds J, Hayta S, Smedley M A, Harwood W, Pearce S, et al. 2021. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 40, 422-431.

Ghaffary S M T, Faris J D, Friesen T L, Visser R G, Van Der Lee T A, Robert O, Kema G H. 2012. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics, 124, 125-142.

Gill B, Wilson D, Raupp W, Hatchett J, Harvey T, Cox T, Sears R. 1991. Registration of KS89WGRC4 hard red winter wheat germplasm with resistance to Hessian fly, greenbug, and soil-borne mosaic virus. Crop Science, 31, 246-246.

Gill H S, Li C, Sidhu J S, Liu W, Sehgal S K. 2019. Fine mapping of the wheat leaf rust resistance gene Lr42. International Journal of Molecular ences, 20, 2445-.

Guo Y, Wang G, Guo X, Chi S, Yu H, Jin K, Huang H, Wang D, Wu C, Tian J, Chen J, Bao Y, Zhang W, Deng Z. 2023. Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS. Frontiers in Plant Science, 14, 1189887.

Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z. 2019. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 1-10.

Hao Y, Kong F, Wang L, Zhao Y, Li M, Che N, Li S, Wang M, Hao M, Zhang X, Zhao Y. 2024. Genome-wide association study of grain micronutrient concentrations in bread wheat. Journal of Integrative Agriculture, 23, 1468-1480.

Harrell F E. 2019. Hmisc: harrell miscellaneous, R package version 4.2-0. https://CRAN.R-project.org/package=Hmisc.

He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A, Hucl P, Wiebe K, Knox R, Cuthbert R, Pozniak C, Akhunova A, Morrell P L, Davies J P, Webb S R, Spangenberg G, Hayes B, Daetwyler H, et al. 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics, 51, 896-904.

Huang L, Brooks S A, Li W, Fellers J P, Trick H N, Gill B S. 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 164, 655-664.

Jiang P, Zhang P, Wu L, He Y, Li C, Ma H, Zhang X. 2021. Linkage and association mapping and Kompetitive allele-specific PCR marker development for improving grain protein content in wheat. Theoretical and Applied Genetics, 134, 3563-3575.

Jiang Y, Wang D-L, Hao M, Zhang J, Liu D-C. 2023. Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters. Journal of Integrative Agriculture, 22, 999-1008.

Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, Toledo F H, Govindan V, Mondal S, Kumar U, Bhavani S, Singh P K, Randhawa M S, He X, Guzman C, Dreisigacker S, Rouse M N, Jin Y, Pérez-Rodríguez P, Montesinos-López O A, et al. 2019. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 51, 1530–1539

Kerber E R. 1987. Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Science, 27, 204-206.

Kumar A, Mantovani E E, Simsek S, Jain S, Elias E M, Mergoum M. 2019. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. Plos One, 14, e0221826.

Kunert A, Naz A A, Dedeck O, Pillen K, Léon J. 2007. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theoretical and Applied Genetics, 115, 683-695.

Li J, Wei H, Hu X, Li C, Tang Y, Liu D, Yang W. 2011. Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agronomica Sinica, 37, 255-261.

Li L, Mao Z, Wang P, Cai J, Zhou Q, Zhong Y, Jiang D, Wang X. 2024. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.05.008

Li N, Miao Y, Ma J, Zhang P, Chen T, Liu Y, Che Z, Shahinnia F, Yang D. 2023. Consensus genomic regions for grain quality traits in wheat revealed by Meta-QTL analysis and in silico transcriptome integration. The Plant Genome, 16, e20336.

Liu Z, Lai X, Chen Y, Zhao P, Wang X, Ji W, Xu S. 2023. Selection and application of four QTLs of grain protein content in modern wheat cultivars. Journal of Integrative Agriculture,

Loit E, Melnyk C W, Macfarlane A J, Scott F W, Altosaar I. 2009. Identification of three wheat globulin genes by screening a Triticum aestivum BAC genomic library with cDNA from a diabetes-associated globulin. BMC Plant Biology, 9, 93.

Lutz J, Hsam S L K, Limpert E, Zeller F J. 1995. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity, 74, 152-156.

Lv G, Tian Q, Zhang F, Chen J, Niaz M, Liu C, Hu H, Sun C, Chen F. 2021. Reduced expression of lipoxygenase genes improves flour processing quality in soft wheat. Journal of Experimental Botany, 72, 6247-6259.

Ma F, Li R, Guo G, Nie F, Zhu L, Liu W, Lyu L, Bai S, Zhao X, Li Z, Zhang D, Li H, Li S, Zhou Y, Song C. 2023. Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat. The Crop Journal,

Mahjourimajd S, Taylor J, Rengel Z, Khabaz-Saberi H, Kuchel H, Okamoto M, Langridge P. 2016. The Genetic Control of Grain Protein Content under Variable Nitrogen Supply in an Australian Wheat Mapping Population. Plos One, 11, e0159371.

Marcone M F, Kakuda Y, Yada R Y. 1998. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chemistry, 62, 27-47.

Marcussen T, Sandve S R, Heier L, Spannagl M, Pfeifer M, Jakobsen K S, Wulff B, Steuernagel B, Mayer K, Olsen O A. 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092-1250092.

Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. 2007. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 1451-1456.

Miranda L M, Murphy J P, Marshall D, Leath S. 2006. Pm34 : a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat ( Triticum aestivum L . ). Theoretical and Applied Genetics, 113, 1497.

Mirzaghaderi G, Mason A S. 2019. Broadening the bread wheat D genome. Theoretical and Applied Genetics, 132, 1295-1307.

Muhammad I, Ogbonnaya F, Van Ginkel M, Oman J. 2008. Characterization of QTL controlling genetic variation for pre-harvest sprouting in synthetic backcross derived wheat lines. Genetics,

Muqaddasi Q H, Brassac J, Ebmeyer E, Kollers S, Korzun V, Argillier O, Stiewe G, Plieske J, Ganal M W, Röder M S. 2020. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Scientific Reports, 10, 12541.

Ogbonnaya F C, Abdalla O, Mujeeb-Kazi A, Kazi A G, Xu S S, Gosman N, Lagudah E S, Bonnett D, Sorrells M E, Tsujimoto H. 2013. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breeding Reviews, 37, 35-122.

Olson E L, Rouse M N, Pumphrey M O, Bowden R L, Gill B S, Poland J A. 2013. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theoretical & Applied Genetics, 126, 2477-2484.

Pu Z-E, Ye X-L, Li Y, Shi B-X, Guo Z, Dai S-F, Ma J, Liu Z-H, Jiang Y-F, Li W, Jiang Q-T, Chen G-Y, Wei Y-M, Zheng Y-L. 2022. Identification and validation of novel loci associated with wheat quality through a genome-wide association study. Journal of Integrative Agriculture, 21, 3131-3147.

Rasheed A, Ogbonnaya F C, Lagudah E, Appels R, He Z. 2018. The goat grass genome’s role in wheat improvement. Nature Plants,

Raupp W J, Sukhwinder-Singh, Brown-Guedira G L, Gill B S. 2001. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theoretical and Applied Genetics, 102, 347-352.

Rowland G G, Kerber E R. 1974. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics & Cytology, 16, 137-144.

Rudd J C, Devkota R N, Baker J A, Peterson G L, Lazar M D, Bean B, Worrall D, Baughman T, Marshall D, Sutton R, Rooney L W, Nelson L R, Fritz A K, Weng Y, Morgan G D, Seabourn B W. 2014. ‘TAM 112’ wheat, resistant to greenbug and wheat curl mite and adapted to the dryland production system in the southern high plains. Journal of Plant Registrations, 8, 291-297.

Saini D K, Devi P, Kaushik P. 2020. Advances in genomic interventions for wheat biofortification: a review. Agronomy, 10, 62.

Sambasivam P, John M, Michael A, Urmil B, Xiaojing W, Li H, Karin D, Mingcheng L, Xiuying K, Harbans B. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341, 786-788.

Shang J, Li L, Liu C, Hong J, Liu M, Zhao B, Zheng X. 2021. Relationships of flour characteristics with isolated starch properties in different Chinese wheat varieties. Journal of Cereal Science, 99, 103210.

Shevkani K, Katyal M, Singh N. 2024. A comparative review of protein and starch characteristics and end-use quality of soft and hard wheat. Food Chemistry Advances, 4, 100613.

Singh R P, Nelson J C, E. S M. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40,

Song Z-P, Zuo Y-Y, Xiang Q, Li W-J, Li J, Liu G, Dai S-F, Yan Z-H. 2023. Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein. Journal of Integrative Agriculture, 22, 1258-1265.

Su Y, Liao P, Song D, Huang S, He J, Gao X, Li S. 2020. Application of Aegilops tauschii–Triticum aestivum recombinant inbred lines for grain protein content quantitative trait loci detection and wheat improvement. Canadian Journal of Plant Science, 100, 425-434.

Uthayakumaran S, Wrigley C W.2010. 4 - Wheat: characteristics and quality requirements. Cereal Grains, 59-111.

Wang X, Yan X, Tian X, Zhang Z, Wu W, Shang J, Ouyang J, Yao W, Li S. 2020. Glycine- and proline-rich protein OsGPRP3 regulates grain size and quality in rice. Journal of Agricultural and Food Chemistry, 68, 7581-7590.

Wang Z, Li Y, Yang Y, Liu X, Qin H, Dong Z, Zheng S, Zhang K, Wang D. 2017. New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants. Scientific Reports, 7, 3428.

Wiersma A T, Pulman J A, Brown L K, Cowger C, Olson E L. 2017. Identification of Pm58 from Aegilops tauschii. Theoretical and Applied Genetics, 130, 1123-1133.

Yan L, Liang F, Xu H, Zhang X, Zhai H, Sun Q, Ni Z. 2017. Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes. Frontiers in Plant Science, 8, 1705.

Yang Z, Wang Z, Hu Z, Xin M, Yao Y, Peng H, You M, Su Z, Guo W. 2020. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agronomica Sinica, 46, 1870-1883.

Yu M, Chen G Y, Zhang L Q, Liu Y X, Liu D C, Wang J R, Pu Z E, Zhang L, Lan X J, Wei Y M, Liu C J, Zheng Y L. 2014. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture, 13, 1835-1844.

Zhang G, Chen R Y, Shao M, Bai G, Seabourn B W. 2021a. Genetic analysis of end-use quality traits in wheat. Crop Science, 61, 1709-1723.

Zhang J, Ren J, Yang J, Fu S, Zhang X, Xia C, Zhao H, Yang K, Wen C. 2023. Evaluation of SNP fingerprinting for variety identification of tomato by DUS testing. Agriculture Communications, 1, 100006.

Zhang L, Guan E, Yang Y, Liu Y, Zhang T, Bian K. 2021b. Impact of wheat globulin addition on dough rheological properties and quality of cooked noodles. Food Chemistry, 362, 130170.

Zhang L, Guan E, Zhang K, Zhang T, Bian K. 2022. The aggregation characteristics of wheat globulin induced by heating and edible salts and its effects on noodle processing quality. LWT, 154, 112803.

Zhao G, Xie S, Zong S, Wang T, Mao C, Shi J, Li J. 2022. Mutation of TL1, encoding a novel C2H2 zinc finger protein, improves grains eating and cooking quality in rice. Theoretical and Applied Genetics, 135, 3531-3543.

Zheng F F, Deng Z Y, Shi C L, Zhang X Y, Tian J C. 2013. QTL Mapping for Dough Mixing Characteristics in a Recombinant Inbred Population Derived from a Waxy × Strong Gluten Wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 12, 951-961.

Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, et al. 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nature Plants, 1-13.

Zhu C, Wang C, Zhou J, Wang Y, Chen Q, Fu L. 2022. Purification and identification of globulin-1 S allele as a novel allergen with N-glycans in wheat (Triticum aestivum). Food Chemistry, 390, 133189.

No related articles found!
No Suggested Reading articles found!