Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
A novel antibiotic 3-isopropylhexahydro-4H-pyrido[1,2-α]pyrazine-1,4(6H)-dione isolated from the thermophilic bacterium Bacillus licheniformis QX928
Hulin Qiu1*, Shaoxian Chen1,*, Aiguo Yin1, 2, Tingting Miao1, Fengfei Shen1, Ying Li1, Yunyi Xiao1, Jinping Hai1, Bo Xu1, 2#

1College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

2Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  多重耐药菌对大多数天然抗生素和合成抗生素表现出抗药性,而细菌能够抵御抗生素杀伤作用的重要机制是形成生物膜,因此抑制或干扰生物膜的形成同时具有杀菌作用是一种有效应对细菌多重抗药性的策略。本研究从四川温泉中筛选到一株地衣芽孢杆菌命名为地衣芽孢杆菌QX928,该菌对金黄色葡萄球菌(Staphylococcus aureus)、肠炎沙门氏菌(Salmonellaenteritidis)、铜绿假单胞菌(Pseudomonas aeruginosa)、大肠杆菌(Escherichia coli)和梭状芽孢杆菌(Clostridium)等常见致病菌具有明显的抑制作用。从该菌发酵液中提取并纯化抑菌活性物质,采用核磁共振、气质联用、高效液相色谱、傅里叶红外结合薄层色谱检测QX928的抗菌活性组分后,鉴定该化合物为3-异丙基六氢-4H-吡哆[1,2-α]吡嗪-1,4(6H)-二酮(IPHPPD)。经SciFinder检索表明IPHPPD是一个由微生物合成同时具有抗菌和抗群体感应特性的抗生素化合物新分子。本研究以铜绿假单胞菌ATCC27853为实验菌,测定IPHPPD最低抑菌浓度为(13±0.17) mg L-1,最低杀菌浓度为(22±0.72) mg L-1通过原子力显微镜、电子显微镜、荧光显微镜观察IPHPPD铜绿假单胞菌生物膜形成过程和已生成生物膜的结构作用机制发现:在低浓度下,IPHPPD干扰了铜绿假单胞菌的信号因子和群体感应,从而改变了生物膜的形态和结构,而高浓度IPHPPD对铜绿假单胞菌的抑制作用更强,主要是通过降低其毒力因子、细胞膜通透性和能量代谢达到杀菌效果经过1×MIC的IPHPPD处理后,转录组分析表明铜绿假单胞菌共有5,708个基因表达发生差异变化,2,516个基因表达被上调,3,192个基因表达被下调;其中与氨基酸代谢、ABC运输、丙酮酸代谢等相关基因表达被明显下调,而与细胞凋亡相关基因表达上调,表明IPHPPD能够与铜绿假单胞菌相互作用并干扰其细胞生理代谢进程,打破其稳定性,干扰细胞正常功能或者通过细胞膜与其胞内物质相互作用使其死亡因此,本研究结果表明低浓度IPHPPD可以强烈抑制致病菌的运动、毒力因子的产生和生物膜的形成,为IPHPPD能够作为药物开发的潜在靶点提供了关键证据,证明IPHPPD在预防和治疗动物疾病药物开发方面具有巨大潜力。 

Abstract  A microbial strain designated Bacillus licheniformis QX928 was screened from hot springs in Sichuan Province, China, and a compound generated in the culture of this strain clearly inhibited Pseudomonas aeruginosa ATCC27853. The measured minimum inhibitory and lowest bactericidal concentrations were (13±0.17) and (22±0.72) mg L-1, respectively. The compound was identified as 3-isopropylhexahydro-4H-pyrido[1,2-α]pyrazine-1,4(6H)-dione (IPHPPD). A SciFinder search revealed that IPHPPD could be the first compound synthesized by microorganisms that had both antibacterial and anti-quorum sensing properties. At low concentrations, IPHPPD interfered with the signaling factors and population effects of P. aeruginosa, thereby altering the biofilm morphology and structure. IPHPPD more strongly inhibited P. aeruginosa at high concentrations, primarily by reducing its virulence factors, cell membrane permeability and energy metabolism. A transcriptome analysis highlighted the role of IPHPPD in the transcriptional regulation of cellular metabolism and quorum sensing. Thus, the results of this study provide critical evidence that IPHPPD is a potential target for drug development to prevent and treat diseases in animals.
Keywords:  thermophilic bacteria       antibacterial mechanism              Quorum sensing              Pseudomonas aeruginosa  
Online: 22 May 2024  
Fund: This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515012380, 2024A1515012511), the Guangdong Special Project on Key Fields of Colleges and Universities (Rural Revitalization, 2020ZDZX1020), Science and Technology Special Fund Project of Maoming Science and Technology Bureau (2021KJZXZJGSPDX003), and the Projects of Talents Recruitment of GDUPT (519033).
About author:  Hulin Qiu, E-mail: 969152127@qq.com; Shaoxian Chen, E-mail: YUQChina@126.com;

Cite this article: 

Hulin Qiu, Shaoxian Chen, Aiguo Yin, Tingting Miao, Fengfei Shen, Ying Li, Yunyi Xiao, Jinping Hai, Bo Xu. 2024. A novel antibiotic 3-isopropylhexahydro-4H-pyrido[1,2-α]pyrazine-1,4(6H)-dione isolated from the thermophilic bacterium Bacillus licheniformis QX928. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.04.021

Adigüzel A, Inan K, Sahin F, Arasoglu T, Gulluce M, Belduz A O, Baris O. 2011. Molecular diversity of  thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey). Turkish Journal of Biology35, 267–274. 

Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. 2006. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob Agents Chemother, 50, 43–48.

Bender A, Glen R C. 2004. Molecular similarity: a key technique in molecular informatics. Organic & Biomolecular Chemistry2, 3204–3218.

Bjorn M J, Sokol P A, Iglewski B H. 1979. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. Journal of Bacteriology, 138, 193–200.

Courtois S, Cappellano C M, Ball M, Francou F X, Normand P, Helynck G, Martinez A, Kolvek S J, Hopke J, Osburne M S, August P R, Nalin R, Guérineau M, Jeannin P, Simonet P, Pernodet J L. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Applied and Environmental Microbiology, 69, 49–55.

Demirjian D C, Morís-Varas F, Cassidy C S. 2001. Enzymes from extremophiles. Current Opinion in Chemical Biology, 5,144-151.

European Committee for Antimicrobial Susceptibility Testing EUCAST of the European Society of Clinical Microbiology and Infectious Diseases ESCMID. 2010. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clinical Microbiology and Infection, 6, 503–508.

Ferrara A M. 2006. Potentially multidrug-resistant non-fermentative Gram-negative pathogens causing nosocomial pneumonia. International Journal of Antimicrobial Agents, 27, 183–195.

Fleitas Martínez O, Rigueiras P O, Pires Á D S, Porto W F, Silva O N, de la Fuente-Nunez C, Franco OL.2019. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens. Frontiers in Cellular and Infection Microbiology. 5,444.

Gellatly S L, Hancock R E W. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173.

Genc B, Nadaroglu H, Adiguzel A, Baltaci O. 2015. Purification and characterization of an extracellular cellulase from Anoxybacillus gonensis O9 isolated from geothermal area in Turkey. Journal of Environmental Biology, 36, 13198–1324.

Geraldine A M, Lopes F A C, Carvalho D D C, Barbosa E T. , Rodrigues A R, Brandão R S, Ulhoa C J, Junior M L. 2013. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biological control, 67, 3088–316.

Gillespie D E, Brady S F, Bettermann A D, Cianciotto N P, Liles M R, Rondon M R, Clardy J, Goodman RM, Handelsman J. 2002. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Applied and Environmental Microbiology, 68, 43018–4306.

Gohar Y M, El-Naggar M M, Soliman M K, Barakat K M. 2010. Characterization of marine Burkholderia cepacia antibacterial agents. Journal of Natural Products3, 868–94.

Hodille E, Rose W, Diep B A, Goutelle S, Lina G, Dumitrescu O. 2017. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus. Clinical Microbiology Reviews,  30, 8878–917.

Holbrook S Y L, Garneau-Tsodikova S. 2017. Evaluation of Aminoglycoside and Carbapenem Resistance in a Collection of Drug-Resistant Pseudomonas aeruginosa Clinical Isolates. Microbial Drug Resistance.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14, R36.

Kiran G S, Priyadharsini S, Sajayan A, Priyadharsini G B, Poulose N, Selvin J. 2017. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and its Application in Food Industry. Frontiers in Microbiology8, 1138.

Kiran G S, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. 2018. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Advances, 8, 17837–17846.

Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell6, 268–41.

Leclercq R, Cantón R, Brown D F J, Giske C G,  Heisig P, MacGowan A P, Mouton J W, Nordmann P, Rodloff A C, Rossolini G M, Soussy C J, Steinbakk M, Winstanley T G, Kahlmeter G. 2013. EUCAST expert rules in antimicrobial susceptibility testing. Clinical Microbiology and Infection, 19, 1418–160.

Logan N A, Berkeley R C. 1984. Identification of Bacillus strains using the API system. Journal of General Microbiology, 130, 18718–1882.

Madigan M T, Marrs B L. 1997. Extremophiles. Scientific American276, 828–87.

Matsunaga T, Tomoda R, Nakajima T,  Wake H. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29, 2118–214.

Magiorakos A P, Srinivasan A, Carey R B, Carmeli Y, Falagas M E, Giske C G, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson D L, Rice L B, Stelling J, Struelens M J, Vatopoulos A, Weber J T, Monnet D L. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18, 268–281.

McClure C D, Schiller N L. 1992. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. Journal of Leukocyte Biology, 51, 97–102.

Mearns-Spragg A, Bregu M, Boyd K G, Burgess J G. 1998. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Letters in Applied Microbiology, 27, 142–146.

Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A,  Tulkens P M, Van Bambeke F. 2007. Pseudomonas aeruginosa: Resistance and therapeutic options at the turn of the new millennium. Clinical Microbiology and Infection, 13, 560–578.

Mohammad B T, Al Daghistani H I, Jaouani A, Abdel-Latif S, Kennes C. 2017. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. International Journal of Microbiology, 6943952.

Noorollahi Y, Yousefi H, Itoi R, Ehara S. 2009. Geothermal energy resources and development in iran. Renew. Renewable &Sustainable Energy Reviews13, 11278–1132.

Odularu A T, Afolayan A J, Sadimenko A P, Ajibade P A, Mbese J Z. 2022. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. Biomed Research International. 9048245.

O'May C, Tufenkji N. 2011. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Applied and Environmental Microbiology, 77, 3061–3067.

O'Toole G, Kaplan H B, Kolter R. 2000. Biofilm formation as microbial development. Annual Review of Microbiology54, 49–79.

Overhage J, Lewenza S, Marr A K, Hancock R E. 2007. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. Journal of Bacteriology189, 2164–2169.

Parkins M D, Somayaji R, Waters V J.2018.  Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clinical Microbiology Reviews. 31, e00019-18.

Prasad J K, Pandey P, Anand R, Raghuwanshi R. 2021. Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins. Frontiers in Microbiology12, 633036.

Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M. 2010. Synthetic control ofstructural order in N-alkylthieno[3,4-c] pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society132, 75958–7597.

Sansinenea E, Ortiz A. 2011. Secondary metabolites of soil Bacillus spp.  Biotechnology Letters33, 1523–1538.

Selvarajan R, Sibanda T, Tekere M, Nyoni H, Meddows-Taylor S. 2017. Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules22, 657.

Selvin J, Kennedy J, Lejon D P, Kiran G S, Dobson A D. 2012. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microbial Cell Factories11, 72.

Sen S K, Mohapatra S K, Satpathy S, Gopala R. 2010. Characterization of hot water spring source isolated clones of bacteria and their industrial applicability. International Journal of Chemical Research2, 438–53.

Ser H L, Palanisamy U D, Yin W F, Abd Malek S N, Chan K G, Goh B H, Lee L H. 2015. Presence of antioxidative agent, Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Frontiers in Microbiology6, 854.

Sharafutdinov I S, Trizna E Y, Baidamshina D R, Ryzhikova M N, Sibgatullina R R, Khabibrakhmanova A M, Latypova L Z, Kurbangalieva A R, Rozhina E V, Klinger-Strobel M, Fakhrullin R F, Pletz M W, Bogachev M I, Kayumov A R, Makarewicz O. 2017. Antimicrobial Effects of Sulfonyl Derivative of 2(5H)-Furanone against Planktonic and Biofilm Associated Methicillin-Resistant and Susceptible Staphylococcus aureus. Frontiers in Microbiology8, 2246.

Singh V K, Mishra A, Jha B. 2017. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the Quorum Sensing-controlled virulence factor production in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 337.

Singh V K, Mishra A, Jha B. 2019. 3-Benzyl-Hexahydro-Pyrrolo[1,2-a] Pyrazine-1,4-Dione Extracted From Exiguobacterium indicum Showed Anti-biofilm Activity Against Pseudomonas aeruginosa by Attenuating Quorum Sensing. Frontiers in Microbiology10, 1269.

Trischman J A, Tapiolas D M, Jensen P R, Dwight R, Fenical W, McKee T C, Ireland C M, Clardy J. 1994. Salinamides A and B: anti-inflammatory depsipeptides from a marine streptomycete. Journal of the American Chemical Society, 116, 757–758.

Wilson Z E, Brimble M A. 2009. Molecules derived from the extremes of life. Natural Product Reports, 26, 44–71.

Zhu H, Thuruthyil S J, Willcox M. 2002. Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. Journal of Medical Microbiology51, 1063–1070.  

No related articles found!
No Suggested Reading articles found!