Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4216-4236    DOI: 10.1016/j.jia.2024.02.020
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition

Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang#

Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
甘蔗/大豆间作与减量施氮作为一种重要的可持续农业模式,可以改变土壤生态功能,进而影响秸秆在土壤中的分解。然而,在长期间作和减量施氮的条件下,秸秆分解过程中土壤有机碳(SOC)组成和微生物群落变化的机制尚不清楚。在本研究中,我们在双因素(种植模式:甘蔗单作(MS)、甘蔗/大豆间作(SB);氮添加水平:减量施氮(N1)和常规施氮(N2))长期试验田中进行了13C-标记大豆秸秆的原位微区培养试验。结果表明,SBN1处理显著提高了秸秆分解过程中秸秆源颗粒有机碳(POC)和秸秆源微生物生物量碳(MBC)的含量,土壤中秸秆碳主要以POC的形式保存。秸秆的加入改变了土壤微生物群落结构,降低了土壤微生物多样性,但随着分解时间的延长,微生物多样性逐渐恢复。在秸秆分解过程中,间作模式显著增加了厚壁菌门和子囊菌门的相对丰度。此外,在甘蔗/大豆间作模式中,秸秆的添加降低了微生物网络的复杂性,而在甘蔗单作模式中,秸秆的添加增加了微生物网络的复杂性。尽管如此,SBN1处理中的微生物网络复杂性仍然高于MSN1处理。总的来说,SBN1处理显著增加了微生物群落的多样性和与有机物分解相关的微生物的相对丰度,微生物群落的变化主要由秸秆源活性SOC组分驱动。这些结果表明,甘蔗/大豆间作与减量施氮处理中的秸秆碳可以更多地固存在土壤中,以保持微生物多样性,促进可持续农业的发展。


Abstract  

Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions, thereby affecting straw decomposition in the soil.  However, the mechanisms underlying changes in soil organic carbon (SOC) composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear.  In this study, we conducted an in-situ microplot incubation experiment with 13C-labeled soybean straw residue addition in a two-factor (cropping pattern: sugarcane monoculture (MS) and sugarcane/soybean intercropping (SB); nitrogen addition levels: reduced nitrogen addition (N1) and conventional nitrogen addition (N2)) long-term experimental field plot.  The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon (POC) and residual microbial biomass carbon (MBC) contents during straw decomposition, and the straw carbon in soil was mainly conserved as POC.  Straw addition changed the structure and reduced the diversity of the soil microbial community, but microbial diversity gradually recovered with decomposition time.  During straw decomposition, the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota.  In addition, straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern.  Nevertheless, microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment.  In general, the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition, and the changes in microbial communities were mainly driven by the residual labile SOC fractions.  These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.


Keywords:  sugarcane/soybean intercropping        13C-labeled straw        labile SOC fractions        microbial networks  
Received: 23 November 2023   Accepted: 15 January 2024
Fund: 
This research was supported by the China National Key R&D Program during the 14th Five-year Plan Period (2022YFD1901603).  
About author:  #Correspondence Jianwu Wang, Tel: +86-20-85285931, E-mail: wangjw@scau.edu.cn

Cite this article: 

Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. 2024. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition. Journal of Integrative Agriculture, 23(12): 4216-4236.

Alfiansah Y R, Peters S, Harder J, Hassenruck C, Gardes A. 2020. Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp Penaeus vannamei aquaculture. Scientific Reports10, 11980.

An T T, Schaeffer S, Li S Y, Fu S F, Pei J B, Li H, Zhuang J, Radosevich M, Wang J K. 2015. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biology & Biochemistry80, 53–61.

Bao Y, Dolfing J, Guo Z Y, Chen R R, Wu M, Li Z P, Lin X G, Feng Y Z. 2021. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome9, 1–17.

Bao Y, Feng Y Z, Stegen J C, Wu M, Chen R R, Liu W J, Zhang J W, Li Z P, Lin X G. 2020. Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil Biology & Biochemistry148, 107886.

Barberán A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal6, 343–351.

Barberán M, Xu M, Liang Z Y, Shi J L, Wei G H, Tian X H. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology26, 2686–2701.

Bastian F, Bouziri L, Nicolardot B, Ranjard L. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology & Biochemistry41, 262–275.

Bedoussac L, Journet E P, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen E, Prieur L, Justes E. 2015. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agronomy for Sustainable Development35, 911–935.

Brookes P C, Landman A, Pruden G, Jenkinson D S. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry17, 837–842.

Bu R Y, Ren T, Lei M J, Liu B, Li X K, Cong R H, Zhang Y Y, Lu J W. 2020. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice–rice–rapeseed rotation system. AgricultureEcosystems & Environment287, 106681.

Chen H, Li W J, Zheng W N, Yin C, Fan X P, Ye M J, Gao Z X, Wu C Y, Liang Y C. 2023. Linking nitrogen- and straw-sensitive indicator species and their co-occurrences to priming effect in agricultural soil exposed to long-term nitrogen fertilization. Soil Biology & Biochemistry176, 108881.

Chen X, Han X Z, Wang X H, Guo Z X, Yan J, Lu X C, Zou W X. 2023. Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol. Journal of Integrative Agriculture22, 1546–1559.

Chen Z M, Wang H Y, Liu X W, Zhao X L, Lu D J, Zhou J M, Li C Z. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research165, 121–127.

Clark J D, Plante A F, Johnson A H. 2012. Soil organic matter quality in chronosequences of secondary northern hardwood forests in Western New England. Soil Science Society of America Journal76, 684–693.

Cui H X, Luo Y L, Chen J, Jin M, Li Y, Wang Z L. 2022. Straw return strategies to improve soil properties and crop productivity in a winter wheat–summer maize cropping system. European Journal of Agronomy133, 126436.

Dang K, Gong X W, Zhao G, Wang H L, Ivanistau A, Feng B L. 2020. Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: A potential mechanism for increasing proso millet grain yield. Frontiers in Microbiology11, 601054.

Deacon L J, Pryce-Miller E J, Frankland J C, Bainbridge B W, Moore P D, Robinson C H. 2006. Diversity and function of decomposer fungi from a grassland soil. Soil Biology & Biochemistry38, 7–20.

Dong Q Q, Zhao X H, Zhou D Y, Liu Z H, Shi X L, Yuan Y, Jia P Y, Liu Y Y, Song P H, Wang X G, Jiang C J, Liu X B, Zhang H, Zhong C, Guo F, Wan S B, Yu H Q, Zhang Z. 2022. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. Frontiers in Plant Science13, 957336.

Drake T W, Van Oost K, Barthel M, Bauters M, Hoyt A M, Podgorski D C, Six J, Boeckx P, Trumbore S E, Ntaboba L C, Spencer R. 2019. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nature Geoscience12, 541–546.

Droste N, May W, Clough Y, Borjesson G, Brady M, Hedlund K. 2020. Soil carbon insures arable crop production against increasing adverse weather due to climate change. Environmental Research Letters15, 124034.

Duchene O, Vian J F, Celette F. 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. AgricultureEcosystems & Environment240, 148–161.

Engelking B, Flessa H, Joergensen R G. 2008. Formation and use of microbial residues after adding sugarcane sucrose to a heated soil devoid of soil organic matter. Soil Biology & Biochemistry40, 97–105.

Fan F L, Yin C, Tang Y J, Li Z J, Song A, Wakelin S A, Zou J, Liang Y C. 2014. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biology & Biochemistry70, 12–21.

Farooq T H, Kumar U, Mo J, Shakoor A, Wang J, Rashid M, Tufail M A, Chen X Y, Yan W D. 2021. Intercropping of peanut–tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants10, 881.

Flessa H, Amelung W, Helfrich M, Wiesenberg G, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes P M. 2008. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science171, 36–51.

Ge T D, Liu C, Yuan H Z, Zhao Z W, Wu X H, Zhu Z K, Brookes P, Wu J S. 2015. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant and Soil392, 17–25.

Ge Z, Li S Y, Bol R, Zhu P, Peng C, An T T, Cheng N, Liu X, Li T Y, Xu Z Q, Wang J K. 2021. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil and Tillage Research213, 105120.

Glissmann K, Conrad R. 2002. Saccharolytic activity and its role as a limiting step in methane formation during the anaerobic degradation of rice straw in rice paddy soil. Biology and Fertility of Soils35, 62–67.

Guo T F, Zhang Q, Ai C, Liang G Q, He P, Zhou W. 2018. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Scientific Reports8, 1847.

Haddix M L, Gregorich E G, Helgason B L, Janzen H, Ellert B H, Cotrufo M F. 2020. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma363, 114160.

Jensen E S, Carlsson G, Hauggaard-Nielsen H. 2020. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agronomy for Sustainable Development40, 1–9.

Jia T, Guo T Y, Yao Y S, Wang R H, Chai B F. 2020. Seasonal microbial community characteristic and its driving factors in a copper tailings dam in the chinese loess plateau. Frontiers in Microbiology11, 1574.

Jia Y F, Kuzyakov Y, Wang G A, Tan W B, Zhu B, Feng X J. 2020. Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degradation & Development31, 632–645.

Li J F, Zhong F F. 2021. Nitrogen release and re-adsorption dynamics on crop straw residue during straw decomposition in an Alfisol. Journal of Integrative Agriculture20, 248–259.

Li S, Wu F Z. 2018. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology9, 1521.

Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, et al. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability4, 943–950.

Li X G, Yang Z, Zhang Y N, Yu L, Ding C F, Liao Y, Dai C C, Wang X X. 2020. Atractylodes lanceavolatiles induce physiological responses in neighboring peanut plant during intercropping. Plant and Soil453, 409–422.

Lia T X, Mu Y H, Jin J, Ma Q B, Cheng Y B, Cai Z D, Nian H. 2019. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ7, 18.

Lin Y X, Ye G P, Kuzyakov Y, Liu D Y, Fan J B, Ding W X. 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology & Biochemistry134, 187–196.

Ling N, Zhu C, Xue C, Chen H, Duan Y H, Peng C, Guo S W, Shen Q R. 2016. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology & Biochemistry99,137–149.

Liu B, Xia H, Jiang C C, Riaz M, Yang L, Chen Y F, Fan X P, Xia X E. 2022. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Science of the Total Environment841, 156608.

Liu H Q, Yao J, Liu B, Li M M, Liu J L, Jiang S, Yu W J, Zhao Y H, Duran R. 2023. Active tailings disturb the surrounding vegetation soil fungal community: Diversity, assembly process and co-occurrence patterns. Science of the Total Environment865, 161133.

Liu X, Dong W Y, Si P F, Zhang Z, Chen B Q, Yan C R, Zhang Y Q, Liu E K. 2019. Linkage between soil organic carbon and the utilization of soil microbial carbon under plastic film mulching in a semi-arid agroecosystem in China. Archives of Agronomy and Soil Science65, 1788–1801.

Liu Z Q, Wei H, Zhang J E, Saleem M, He Y A, Zhong J W, Ma R. 2021. Higher sensitivity of soil microbial network than community structure under acid rain. Microorganisms9, 118.

Lu Y H, Watanabe A, Kimura M. 2003. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology & Biochemistry35, 1223–1230.

Luo S S, Yu L L, Liu Y, Zhang Y, Yang W T, Li Z X, Wang J W. 2016. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. European Journal of Agronomy81, 78–85.

Ma B, Wang H Z, Dsouza M, Lou J, He Y, Dai Z M, Brookes P C, Xu J M, Gilbert J A. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal10, 1891–1901.

Marschner P, Umar S, Baumann K. 2011. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology & Biochemistry43, 445–451.

Mo F, Zhu Y, Wang Z Y, Deng H L, Li P F, Sun S K, Xiong Y C. 2021. Polyethylene film mulching enhances the microbial carbon-use efficiency, physical and chemical protection of straw-derived carbon in an Entisol of the Loess Plateau. Science of the Total Environment792, 148357.

Morugan-Coronado A, Perez-Rodriguez P, Insolia E, Soto-Gomez D, Fernandez-Calvino D, Zornoza R. 2022. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. AgricultureEcosystems & Environment329, 107867.

Oksanen J F, Blanchet F G, Kindt R, Legendre P, Wagner H. 2010. Vegan: Community ecology package. Community Ecology Package2018, 5–8.

Pankou C, Lithourgidis A, Dordas C. 2021. Effect of irrigation on intercropping systems of wheat (Triticum aestivum L.) with pea (Pisum sativum L.). Agronomy-Basel11, 283.

Pivato B, Semblat A, Guégan T, Jacquiod S, Martin J, Deau F, Moutier N, Lecomte C, Burstin J, Lemanceau P. 2021. Rhizosphere bacterial networks, but not diversity, are impacted by pea–wheat intercropping. Frontiers in Microbiology12, 674556.

Prober S M, Leff J W, Bates S T, Borer E T, Firn J, Harpole W S, Lind E M, Seabloom E W, Adler P B, Bakker J D, Cleland E E, Decrappeo N M, Delorenze E, Hagenah N, Hautier Y, Hofmockel K S, Kirkman K P, Knops J, La Pierre K J, Macdougall A S, et al. 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters18, 85–95.

Qi R M, Li J, Lin Z A, Li Z J, Li Y T, Yang X D, Zhang J J, Zhao B Q. 2016. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology102, 36–45.

Qiu J, Cardinale B J. 2020. Scaling up biodiversity-ecosystem function relationships across space and over time. Ecology101, e03166.

Ramirez P B, Calderon F J, Fonte S J, Santibanez F, Bonilla C A. 2020. Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecological Indicators111, 106042.

Ren C J, Wang J Y, Bastida F, Delgado-Baquerizo M, Yang Y H, Wang J, Zhong Z K, Zhou Z H, Zhang S H, Guo Y X, Zhou S, Wei G H, Han X H, Yang G H, Zhao F Z. 2022. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology28, 1516–1528.

Ren G C, Zhang X F, Xin X L, Yang W L, Zhu A N, Yang J, Li M R. 2023. Soil organic carbon and nitrogen fractions as affected by straw and nitrogen management on the North China Plain. AgricultureEcosystems & Environment342, 108248.

Sapkota R, Santos S, Farias P, Krogh P H, Winding A. 2020. Insights into the earthworm gut multi-kingdom microbial communities. Science of the Total Environment727, 138301.

Sekaran U, Mccoy C, Kumar S, Subramanian S. 2019. Soil microbial community structure and enzymatic activity responses to nitrogen management and landscape positions in switchgrass (Panicum virgatum L.). GCB Bioenergy, 11, 836–851.

Shu S J, Jain A K, Koven C D, Mishra U. 2020. Estimation of permafrost SOC stock and turnover time using a land surface model with vertical heterogeneity of permafrost soils. Global Biogeochemical Cycles34, e2020GB006585.

Surigaoge S, Yang H, Su Y, Du Y H, Ren S X, Fornara D, Christie P, Zhang W P, Li L. 2023. Maize/peanut intercropping has greater synergistic effects and home-field advantages than maize/soybean on straw decomposition. Frontiers in Plant Science14, 1100842.

Te X, Din A, Cui KS, Raza M A, Ali M F, Xiao J H, Yang W Y. 2023. Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research291, 108793.

De Troyer I, Amery F, Van Moorleghem C, Smolders E, Merckx R. 2011. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biology & Biochemistry43, 513–519.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

Wagg C, Schlaeppi K, Banerjee S, Kuramae E E, van der Heijden M. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.

Wang C, Xiao R, Guo Y T, Wang Q, Cui Y, Xiu Y J, Ma Z W, Zhang M X. 2021. Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping. Science of the Total Environment762, 143996.

Wang J, Fu X, Sainju U M, Zhao F Z. 2018. Soil carbon fractions in response to straw mulching in the Loess Plateau of China. Biology and Fertility of Soils54, 423–436.

Wang X D, He C, Liu B Y, Zhao X, Liu Y, Wang Q, Zhang H L. 2020. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy-Basel10, 691.

Wang X L, Feng Y J, Yu L L, Shu Y H, Tan F X, Gou Y G, Luo S S, Yang W T, Li Z X, Wang J W. 2020. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Science of the Total Environment719, 137517.

Ward C P, Nalven S G, Crump B C, Kling G W, Cory R M. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nature Communications8, 772.

Wei H W, Wang L H, Hassan M, Xie B. 2018. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresource Technology256, 333–341.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil Biology and Biochemistry22, 1167–1169.

Wu W X, Liu W, Lu H H, Chen Y X, Devare M, Thies J. 2009. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiology Ecology67, 93–102.

Xiao D, He X Y, Wang G H, Xu X C, Hu Y J, Chen X B, Zhang W, Su Y, Wang K L, Soromotin A V, Alharbi H A, Kuzyakov Y. 2022. Network analysis reveals bacterial and fungal keystone taxa involved in straw and soil organic matter mineralization. Applied Soil Ecology173, 104395.

Xiao X W, Han L, Chen H R, Wang J J, Zhang Y P, Hu A. 2023. Intercropping enhances microbial community diversity and ecosystem functioning in maize fields. Frontiers in Microbiology13, 1084452.

Yadav G S, Das A, Lal R, Babu S, Datta M, Meena R S, Patil S B, Singh R. 2019. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)–rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. AgricultureEcosystems & Environment275, 81–92.

Yang H S, Fang C, Meng Y, Dai Y J, Liu J. 2021. Long-term ditch-buried straw return increases functionality of soil microbial communities. Catena202, 105316.

Yang J J, Li A Y, Yang Y F, Li G H, Zhang F. 2020. Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth Science Reviews205, 103199.

Yang W, Li Z, Wang J, Wu P, Zhang Y. 2013. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Research146, 44–50.

Yu R P, Yang H, Xing Y, Zhang W P, Lambers H, Li L. 2022. Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil476, 263–288.

Yu Y J, Wu M, Petropoulos E, Zhang J W, Nie J, Liao Y L, Li Z P, Lin X G, Feng Y Z. 2019. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment656, 625–633.

Zhang R Z, Mu Y, Li X R, Li S M, Sang P, Wang X R, Wu H L, Xu N. 2020. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment740, 139810.

Zhang X L, Teng Z Y, Zhang H H, Cai D J, Zhang J Y, Meng F J, Sun G Y. 2021. Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil. Journal of Forestry Research32, 2121–2133.

Zhang X P, Ning T Y, Han H F, Sun T, Li G, Li Z J, Lal R. 2018. Effects of waxy maize relay intercropping and residue retention on rhizosphere microbial communities and vegetable yield in a continuous cropping system. Pedosphere28, 84–93.

Zhang Y L, Hou W, Chi M J, Sun Y, An J, Yu N, Zou H T. 2020. Simulating the effects of soil temperature and soil moisture on CO2 and CH4 emissions in rice straw-enriched paddy soil. Catena194, 104677.

Zhang Z Q, Lu Y H, Wei G H, Jiao S. 2022. Rare species-driven diversity–ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio13, 16.

Zhao S C, Ciampitti I A, Qiu S J, Xu X P, He P. 2021. Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China. Journal of Integrative Agriculture20, 3289–3298.

Zhong Y, Liu J, Jia X Y, Shangguan Z P, Wang R W, Yan W M. 2020. Microbial community assembly and metabolic function during wheat straw decomposition under different nitrogen fertilization treatments. Biology and Fertility of Soils56, 697–710.

No related articles found!
No Suggested Reading articles found!