Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1958-1971    DOI: 10.1016/j.jia.2024.03.001
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Bioinformatics analysis of type II toxin–antitoxin systems and regulatory functional assessment of HigBA and SS-ATA in Streptococcus suis

Qibing Gu1, 3, 4*, Xiayu Zhu1*, Qiankun Bai1, 3, 4, Chengyuan Ji1, 3, 4, Yue Zhang1, 2, 4, Jiale Ma1, 3, 4, Huochun Yao1, 3, 4#, Zihao Pan1, 3, 4#

1 Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

2 College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China

3 Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China

4 WOAH Reference Lab for Swine Streptococcosis, Nanjing 210095, China

 Highlights 
A comprehensive analysis and identification of the type II toxin-antitoxin system encoded within Streptococcus suis was conducted.
The HigBA TA system was identified as a negative regulator of the type VII secretion system (T7SS) in Streptococcus suis.
A novel, widely distributed type II TA system (designated SS-ATA) was identified in the Streptococcus suis genome, which exerts negative regulation on the downstream two-component signaling system (TCSS).
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  【目的毒素-抗毒素Toxin-antitoxin, TA系统在细菌和古细菌中广泛分布在细菌生理中发挥着多种作用,因此被认为在环境压力适应中发挥重要作用。尽管许多TA系统已经在不同的细菌中被表征,但对猪链球菌Streptococcus suis, S. suis)中TA系统的研究仍然十分有限。对猪链球菌中TA系统的系统分析与功能研究将有助于了解TA系统的生物学功能,并为猪链球菌的致病与压力应激机制提供新的见解。方法】利用在线工具TAfinder预测猪链球菌基因组上编码的TA系统;通过氨基酸序列比对和系统发育分析对TA系统进行生物信息学分析;进一步建立大肠杆菌诱导表达系统鉴定TA系统的活性;此外通过β-半乳糖苷酶活性分析与转录水平分析探究HigBASS-ATA的调控功能。结果通过对95株具有完整基因组的菌株预测,我们共检索了612个假定的TA系统。值得注意的是,这些TA系统在血清型245914型和新的血清型ChzNCL1NCL3型菌株中编码率较高。通过建立的两种大肠杆菌诱导表达系统可以成功鉴定TA系统的活性。进一步通过测定β-半乳糖苷酶活性与转录水平分析发现猪链球菌中HigBA系统对型分泌系统(T7SS)存在负调控作用。通过生物信息学分析发现猪链球菌中广泛编码一类新的TA系统SS-ATA(抗毒素-毒素-抗毒素),这类TA系统与下游的二元信号转导系统(TCSS)组成一个操纵子,并且SS-ATA对下游的TCSS存在负调控作用。结论】本研究首次对猪链球菌中编码的TA系统进行了系统分析,并且证实了HigBASS-ATA作为一种重要的调控元件在猪链球菌中广泛分布。创新性】对猪链球菌中编码的TA系统进行了系统的分析;鉴定了猪链球菌中编码的HigBAT7SS具有负调控作用;在猪链球菌基因组中发现了一类广泛分布的新的TA系统SS-ATA,其对下游的TCSS具有负调控作用。

Abstract  

Toxin–antitoxin (TA) systems, which are prevalent in bacteria and archaea, play diverse roles in bacterial physiology and have been proposed to be significant in stress adaptation.  Despite the extensive characterization of numerous TA systems in various bacteria, the investigation of these systems within Streptococcus suis is still limited.  Here, we systematically analyzed the type II TA systems of 95 Ssuis genomes available in the GenBank database using TAfinder.  A total of 612 putative type II TA systems were retrieved and classified into 10 categories by phylogenetic analysis.  Notably, an elevated occurrence of these TA systems was observed among the important prevalent serotypes 2, 4, 5, 9, 14, Chz, NCL1, and NCL3 strains.  The following study identified the activities of TA systems using 2 strategies and confirmed the regulatory effect of HigBA on the type VII secretion system in Ssuis by measuring β-galactosidase activity and transcriptional changes.  Moreover, we unveiled a hitherto uncharacterized, highly prevalent novel TA system, with the composition of antitoxin–toxin–antitoxin (SS-ATA), which regulates the downstream two-component signaling system.  Altogether, this study systematically analyzed the type II TA systems within Ssuis, highlighting the widespread distribution of HigBA and SS-ATA as important regulatory elements in Ssuis.

Keywords:  type II toxin-antitoxin system       Streptococcus suis       HigBA       type VII secretion system       two-component signaling system       regulatory element  
Received: 04 July 2023   Online: 02 March 2024   Accepted: 07 January 2024
Fund:  This research was supported by the National Key Research and Development Program of China (2022YFD1800904), the National Natural Science Foundation of China (31972650 and 32102673), and the Postgraduate Research&Practice Innovation Program of Jiangsu Province, China (KYCX22_0780), and the China Postdoctoral Science Foundation (2020M682297).

About author:  Qibing Gu, E-mail: 2020207030@stu.njau.edu.cn; #Correspondence Huochun Yao, E-mail: yaohch@njau.edu.cn; Zihao Pan, Tel: +86-25-84395328, E-mail: panzihao@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qibing Gu, Xiayu Zhu, Qiankun Bai, Chengyuan Ji, Yue Zhang, Jiale Ma, Huochun Yao, Zihao Pan. 2025. Bioinformatics analysis of type II toxin–antitoxin systems and regulatory functional assessment of HigBA and SS-ATA in Streptococcus suis. Journal of Integrative Agriculture, 24(5): 1958-1971.

Ainelo A, Porosk R, Kilk K, Rosendahl S, Remme J, Hõrak R. 2019. Pseudomonas putida responds to the toxin GraT by inducing ribosome biogenesis factors and repressing TCA cycle enzymes. Toxins (Basel), 11, 103.

Akarsu H, Bordes P, Mansour M, Bigot D J, Genevaux P, Falquet L. 2019. TASmania: A bacterial toxin-antitoxin systems database. PLoS Computational Biology15, e1006946.

Christensen-Dalsgaard M, Gerdes K. 2008. Translation affects yoeB and mazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Research36, 6472–6481.

Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, Thakur K G. 2018. Structural, functional and biological insights into the role of Mycobacterium tuberculosis vapBC11 toxin–antitoxin system: Targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Research46, 11639–11655.

Feng Y, Zhang H, Ma Y, Gao G F. 2010. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends in Microbiology18, 124–131.

Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. 2014. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence5, 477–497.

Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M. 2016. Toxin–antitoxin systems in clinical pathogens. Toxins (Basel), 8, 227.

Gerdes K, Rasmussen P B, Molin S. 1986. Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America83, 3116–3120.

Goyette-Desjardins G, Auger J P, Xu J, Segura M, Gottschalk M. 2014. Streptococcus suis, an important pig pathogen and emerging zoonotic agent - an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes & Infections3, e45.

Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. 2021. An auto-regulating type II toxin–antitoxin system modulates drug resistance and virulence in Streptococcus suisFrontiers in Microbiology12, 671706.

Guo Y, Sun C, Li Y, Tang K, Ni S, Wang X. 2019. Antitoxin higA inhibits virulence gene mvfR expression in Pseudomonas aeruginosaEnvironmental Microbiology21, 2707–2723.

Harms A, Brodersen D E, Mitarai N, Gerdes K. 2018. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell70, 768–784.

Hill J E, Gottschalk M, Brousseau R, Harel J, Hemmingsen S M, Goh S H. 2005. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisrattiVeterinary Microbiology107, 63–69.

Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z. 2019. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transboundary and Emerging Diseases66, 995–1003.

Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. 2022. Biology and evolution of bacterial toxin–antitoxin systems. Nature Reviews Microbiology20, 335–350.

Lai L, Dai J, Tang H, Zhang S, Wu C, Qiu W, Lu C, Yao H, Fan H, Wu Z. 2017. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiaeVeterinary Microbiology205, 26–33.

Li M, Long Y, Liu Y, Chen R, Shi J, Zhang L, Jin Y, Yang L, Bai F, Jin S, Cheng Z, Wu W. 2016. HigB of Pseudomonas aeruginosa enhances killing of phagocytes by up-regulating the type III secretion system in ciprofloxacin induced persister cells. Frontiers in Cellular and Infection Microbiology6, 125.

Li M, Wang C, Feng Y, Pan X, Cheng G, Wang J, Ge J, Zheng F, Cao M, Dong Y, Liu D, Lin Y, Du H, Gao G F, Wang X, Hu F, Tang J. 2008. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE3, e2080.

Liu G, Gao T, Zhong X, Ma J, Zhang Y, Zhang S, Wu Z, Pan Z, Zhu Y, Yao H, Liu Y, Lu C. 2020. The novel streptococcal transcriptional regulator XtgS negatively regulates bacterial virulence and directly represses PseP transcription. Infection and Immunity88, e00035–20.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods25, 402–408.

Ma L, Zhang Y, Yan X, Guo L, Wang L, Qiu J, Yang R, Zhou D. 2012. Expression of the type VI secretion system 1 component Hcp1 is indirectly repressed by OpaR in Vibrio parahaemolyticusThe Scientific World Journal2012, 982140.

Van Melderen L, De Bast M S. 2009. Bacterial toxin-antitoxin systems: More than selfish entities? PLoS Genetics5, e1000437.

Mutschler H, Gebhardt M, Shoeman R L, Meinhart A. 2011. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biology9, e1001033.

Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the United States of America80, 4784–4788.

Ovchinnikov S V, Bikmetov D, Livenskyi A, Serebryakova M, Wilcox B, Mangano K, Shiriaev D I, Osterman I A, Sergiev P V, Borukhov S, Vazquez-Laslop N, Mankin A S, Severinov K, Dubiley S. 2020. Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Research48, 8617–8625.

Pan Z, Ma J, Dong W, Song W, Wang K, Lu C, Yao H. 2015. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Applied and Environmental Microbiology81, 976–985.

Sala A, Bordes P, Genevaux P. 2014. Multiple toxin–antitoxin systems in Mycobacterium tuberculosisToxins (Basel), 6, 1002–1020.

Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Molecular Cell50, 136–148.

Song Y, Luo G, Zhu Y, Li T, Li C, He L, Zhao N, Zhao C, Yang J, Huang Q, Mu X, Tang X, Kang M, Wu S, He Y, Bao R. 2021a. Pseudomonas aeruginosa antitoxin HigA functions as a diverse regulatory factor by recognizing specific pseudopalindromic DNA motifs. Environmental Microbiology23, 1541–1558.

Song Y, Zhang S, Luo G, Shen Y, Li C, Zhu Y, Huang Q, Mou X, Tang X, Liu T, Wu S, Tong A, He Y, Bao R. 2021b. Type II antitoxin HigA is a key virulence regulator in Pseudomonas aeruginosaACS Infectious Diseases7, 2930–2940.

Song Y, Zhang S, Ye Z, Chen L, Tong A, He Y, Bao R. 2022. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Research50, 10586–10600.

Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H, Wu B, Wang H, Zhao H, Lin Y, Yue J, Wu Z, He X, Gao F, Khan A H, Wang J, et al. 2006. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Medicine3, e151.

Tiwari P, Arora G, Singh M, Kidwai S, Narayan O P, Singh R. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nature Communications6, 6059.

Wen W, Liu B, Xue L, Zhu Z, Niu L, Sun B. 2018. Autoregulation and virulence control by the toxin–antitoxin system SavRS in Staphylococcus aureusInfection and Immunity86, e00032–18.

Wen Y, Behiels E, Devreese B. 2014. Toxin–antitoxin systems: Their role in persistence, biofilm formation, and pathogenicity. Pathogens Disease70, 240–249.

Wertheim H F, Nguyen H N, Taylor W, Lien T T, Ngo H T, Nguyen T Q, Nguyen B N, Nguyen H H, Nguyen H M, Nguyen C T, Dao T T, Nguyen T V, Fox A, Farrar J, Schultsz C, Nguyen H D, Nguyen K V, Horby P. 2009. Streptococcus suis, an important cause of adult bacterial meningitis in northern Vietnam. PLoS ONE4, e5973.

Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. 2014. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA20, 882–898.

Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. 2018. Identification of three type II toxin–antitoxin systems in Streptococcus suis serotype 2. Toxins (Basel), 10, 467.

Yang Q E, Walsh T R. 2017. Toxin–antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiology Reviews41, 343–353.

Zaccaria E, van Baarlen P, de Greeff A, Morrison D A, Smith H, Wells J M. 2014. Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLoS ONE9, e99394.

Zheng C, Xu J, Ren S, Li J, Xia M, Chen H, Bei W. 2015. Identification and characterization of the chromosomal yefM-yoeB toxin–antitoxin system of Streptococcus suisScientific Reports5, 13125.

Zhong X, Zhang Y, Zhu Y, Dong W, Ma J, Pan Z, Roy S, Lu C, Yao H. 2018. The two-component signaling system VraSR(ss) is critical for multidrug resistance and full virulence in Streptococcus suis serotype 2. Infection and Immunity86, e00096–18.

[1] LI Wei-tao, JIANG Qian-tao, CHEN Guo-yue, PU Zhi-en, LIU Ya-xi, WANG Ji-rui, ZHENG You-liang, WEI Yu-ming. Comparative Analysis of Hina Gene Sequences in Wild (Hordeum spontaneum) and Cultivated (H. vulgare) Barleys[J]. >Journal of Integrative Agriculture, 2011, 10(9): 1313-1322.
No Suggested Reading articles found!