Ainelo A, Porosk R, Kilk K, Rosendahl S, Remme J, Hõrak R. 2019. Pseudomonas putida responds to the toxin GraT by inducing ribosome biogenesis factors and repressing TCA cycle enzymes. Toxins (Basel), 11, 103.
Akarsu H, Bordes P, Mansour M, Bigot D J, Genevaux P, Falquet L. 2019. TASmania: A bacterial toxin-antitoxin systems database. PLoS Computational Biology, 15, e1006946.
Christensen-Dalsgaard M, Gerdes K. 2008. Translation affects yoeB and mazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Research, 36, 6472–6481.
Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, Thakur K G. 2018. Structural, functional and biological insights into the role of Mycobacterium tuberculosis vapBC11 toxin–antitoxin system: Targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Research, 46, 11639–11655.
Feng Y, Zhang H, Ma Y, Gao G F. 2010. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends in Microbiology, 18, 124–131.
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. 2014. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence, 5, 477–497.
Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M. 2016. Toxin–antitoxin systems in clinical pathogens. Toxins (Basel), 8, 227.
Gerdes K, Rasmussen P B, Molin S. 1986. Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 3116–3120.
Goyette-Desjardins G, Auger J P, Xu J, Segura M, Gottschalk M. 2014. Streptococcus suis, an important pig pathogen and emerging zoonotic agent - an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes & Infections, 3, e45.
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. 2021. An auto-regulating type II toxin–antitoxin system modulates drug resistance and virulence in Streptococcus suis. Frontiers in Microbiology, 12, 671706.
Guo Y, Sun C, Li Y, Tang K, Ni S, Wang X. 2019. Antitoxin higA inhibits virulence gene mvfR expression in Pseudomonas aeruginosa. Environmental Microbiology, 21, 2707–2723.
Harms A, Brodersen D E, Mitarai N, Gerdes K. 2018. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.
Hill J E, Gottschalk M, Brousseau R, Harel J, Hemmingsen S M, Goh S H. 2005. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti. Veterinary Microbiology, 107, 63–69.
Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z. 2019. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transboundary and Emerging Diseases, 66, 995–1003.
Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L. 2022. Biology and evolution of bacterial toxin–antitoxin systems. Nature Reviews Microbiology, 20, 335–350.
Lai L, Dai J, Tang H, Zhang S, Wu C, Qiu W, Lu C, Yao H, Fan H, Wu Z. 2017. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Veterinary Microbiology, 205, 26–33.
Li M, Long Y, Liu Y, Chen R, Shi J, Zhang L, Jin Y, Yang L, Bai F, Jin S, Cheng Z, Wu W. 2016. HigB of Pseudomonas aeruginosa enhances killing of phagocytes by up-regulating the type III secretion system in ciprofloxacin induced persister cells. Frontiers in Cellular and Infection Microbiology, 6, 125.
Li M, Wang C, Feng Y, Pan X, Cheng G, Wang J, Ge J, Zheng F, Cao M, Dong Y, Liu D, Lin Y, Du H, Gao G F, Wang X, Hu F, Tang J. 2008. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE, 3, e2080.
Liu G, Gao T, Zhong X, Ma J, Zhang Y, Zhang S, Wu Z, Pan Z, Zhu Y, Yao H, Liu Y, Lu C. 2020. The novel streptococcal transcriptional regulator XtgS negatively regulates bacterial virulence and directly represses PseP transcription. Infection and Immunity, 88, e00035–20.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25, 402–408.
Ma L, Zhang Y, Yan X, Guo L, Wang L, Qiu J, Yang R, Zhou D. 2012. Expression of the type VI secretion system 1 component Hcp1 is indirectly repressed by OpaR in Vibrio parahaemolyticus. The Scientific World Journal, 2012, 982140.
Van Melderen L, De Bast M S. 2009. Bacterial toxin-antitoxin systems: More than selfish entities? PLoS Genetics, 5, e1000437.
Mutschler H, Gebhardt M, Shoeman R L, Meinhart A. 2011. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biology, 9, e1001033.
Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the United States of America, 80, 4784–4788.
Ovchinnikov S V, Bikmetov D, Livenskyi A, Serebryakova M, Wilcox B, Mangano K, Shiriaev D I, Osterman I A, Sergiev P V, Borukhov S, Vazquez-Laslop N, Mankin A S, Severinov K, Dubiley S. 2020. Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Research, 48, 8617–8625.
Pan Z, Ma J, Dong W, Song W, Wang K, Lu C, Yao H. 2015. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Applied and Environmental Microbiology, 81, 976–985.
Sala A, Bordes P, Genevaux P. 2014. Multiple toxin–antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel), 6, 1002–1020.
Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Molecular Cell, 50, 136–148.
Song Y, Luo G, Zhu Y, Li T, Li C, He L, Zhao N, Zhao C, Yang J, Huang Q, Mu X, Tang X, Kang M, Wu S, He Y, Bao R. 2021a. Pseudomonas aeruginosa antitoxin HigA functions as a diverse regulatory factor by recognizing specific pseudopalindromic DNA motifs. Environmental Microbiology, 23, 1541–1558.
Song Y, Zhang S, Luo G, Shen Y, Li C, Zhu Y, Huang Q, Mou X, Tang X, Liu T, Wu S, Tong A, He Y, Bao R. 2021b. Type II antitoxin HigA is a key virulence regulator in Pseudomonas aeruginosa. ACS Infectious Diseases, 7, 2930–2940.
Song Y, Zhang S, Ye Z, Chen L, Tong A, He Y, Bao R. 2022. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Research, 50, 10586–10600.
Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H, Wu B, Wang H, Zhao H, Lin Y, Yue J, Wu Z, He X, Gao F, Khan A H, Wang J, et al. 2006. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Medicine, 3, e151.
Tiwari P, Arora G, Singh M, Kidwai S, Narayan O P, Singh R. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nature Communications, 6, 6059.
Wen W, Liu B, Xue L, Zhu Z, Niu L, Sun B. 2018. Autoregulation and virulence control by the toxin–antitoxin system SavRS in Staphylococcus aureus. Infection and Immunity, 86, e00032–18.
Wen Y, Behiels E, Devreese B. 2014. Toxin–antitoxin systems: Their role in persistence, biofilm formation, and pathogenicity. Pathogens Disease, 70, 240–249.
Wertheim H F, Nguyen H N, Taylor W, Lien T T, Ngo H T, Nguyen T Q, Nguyen B N, Nguyen H H, Nguyen H M, Nguyen C T, Dao T T, Nguyen T V, Fox A, Farrar J, Schultsz C, Nguyen H D, Nguyen K V, Horby P. 2009. Streptococcus suis, an important cause of adult bacterial meningitis in northern Vietnam. PLoS ONE, 4, e5973.
Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. 2014. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA, 20, 882–898.
Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. 2018. Identification of three type II toxin–antitoxin systems in Streptococcus suis serotype 2. Toxins (Basel), 10, 467.
Yang Q E, Walsh T R. 2017. Toxin–antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiology Reviews, 41, 343–353.
Zaccaria E, van Baarlen P, de Greeff A, Morrison D A, Smith H, Wells J M. 2014. Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLoS ONE, 9, e99394.
Zheng C, Xu J, Ren S, Li J, Xia M, Chen H, Bei W. 2015. Identification and characterization of the chromosomal yefM-yoeB toxin–antitoxin system of Streptococcus suis. Scientific Reports, 5, 13125.
Zhong X, Zhang Y, Zhu Y, Dong W, Ma J, Pan Z, Roy S, Lu C, Yao H. 2018. The two-component signaling system VraSR(ss) is critical for multidrug resistance and full virulence in Streptococcus suis serotype 2. Infection and Immunity, 86, e00096–18.
|