Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
TBX3 orchestrates H3K4 trimethylation for porcine induced pluripotent stem cells to totipotent-like stem cells
Qiaoyan Shen1, 7, Xiaojie Wu1, Ziyu Chen2, Jianxiong Guo4, Wei Yue1, Shuai Yu1, Rui Zhang1, Xiaolong Wu1, Heng Zhao4, Qin Pan1, Juqing Zhang1, Zhenshuo Zhu1, Xinchun Yang1, Wenjing Xu1, Yunxiang Li1, Anmin Lei1, Sha Peng1, Fan Yang1, Shiqiang Zhang1, Gang Ren5, Jun Wu6, Na Li1*, Hongjiang Wei3,4*, Mingzhi Liao2*, Jinlian Hua1*

1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;

2 College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.

3 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

4 College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

5 College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

6 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

7  State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  目前人们所获得的猪多能干细胞普遍缺乏有效嵌合能力,极大的阻碍了猪发育生物学及干细胞育种等领域的研究进展。本研究通过 TBX3 导入 OSKMOCT4SOX2KLF4c-MYC)诱导所建立的猪诱导多能干细胞(induced Pluripotent Stem CellsiPSCs),发现 OSKMT 细胞相对 OSKM 细胞具有胚内与胚外谱系分化的全胚层发育能力,具有全能性细胞的特征totipotent-like stem cells (TLSCs)。主要实验结果如下:1.OSKMT 细胞株整体转录水平与猪 4 细胞期胚胎相接近。通过OSKM 细胞株与 OSKMT细胞株的构建,证实TBX3 有利于猪 iPSCs 重编程的加速进行。同时,且OSKMT细胞株呈现出广泛的4 细胞胚胎期基因 MCL1PDIA3SYT5等基因相对上调表达的特征。2.体外类囊胚 (Blastoids)的形成确认 OSKMT 细胞株在体外具有全谱系分化能力:通过拟胚体(Embryoid BodiesEBs与畸胎瘤的形成,发现 OSKMT 具有分化产生滋养层与体内三胚层组织细胞的特性。单细胞源人造 Blastoids 的形成是评价全能性的重要指标,在 EBs 的形成中,OSKMT 细胞具有自发形成 Blastoids 的能力,进一步确认了 OSKMT 细胞的全能性。3.体内嵌合实验确认 OSKMT 细胞株的类全能性: OSKMT 细胞株进行嵌合能力的分析,证明其在小鼠早期胚胎的异种嵌合中具有 TE ICM 的双向嵌合特征与更高的存活率,并获得了发育 28 天的胎盘与胎儿双嵌合特征的嵌合体,证明了OSKMT 细胞具有全能性4.TBX3 激活 H3K4me3 甲基转移酶 MLL1 的转录,进而催化 H3K4me3 修饰的转变:解析 TBX3 的作用机制,发现 TBX3 的表达有利于 MLL1SETD1A  H3K4me3 甲基转移酶转录激活,发现 MLL1 对滋养层发育能力存在显著性影响,揭示 MLL1 是全能性获得的重要靶点。5.MCL1 TBX3 - MLL1调控轴的重要靶点:寻找 TBX3 - MLL1 调控轴的下游靶基因。MCL1 是猪 ZGA 时期特征性基因。 OSKMT 组中 H3K4me3MCL1  TSS 区域富集丰度增加,且 OSKMT 具有明显的高表达 MCL1 特征。通过 MCL1 的过表达与抑制,发现 MCL1 抑制影响了 OSKMT 的滋养层形成能力,从而确认了 MCL1 TBX3-MLL1 调控轴的关键下游基因。综上所述,本研究表明猪 TBX3 具有促进猪 iPSCs TLSCs的转变的功能,为发育生物学、疾病模型和家畜育种研究提供了新的平台。

Abstract  Pluripotent stem cells (PSCs) are useful for developmental and translational research because they have the potential to differentiate into all cell types of an adult individual. Pigs are one of the most important domestic ungulates, commonly used for food and as bioreactors. Generating stable pluripotent porcine PSC lines remains challenging. So far, the pluripotency gene network of porcine PSCs is poorly understood. Here we found that TBX3-derived induced pluripotent stem cells (iPSCs) closely resemble porcine 4-cell embryos with the capacity of totipotent-like stem cells (TLSCs). Interestingly, our data suggest that TBX3 facilitates the activation of H3K4me3 methyltransferase, specifically MLL1. Subsequent investigations revealed that the porcine 4-cell specific gene, MCL1, is a key downstream effector of the TBX3-MLL1 axis. Together, our study of the TBX3 regulatory network is helpful in the understanding of the totipotency characteristics of pigs.
Keywords:  TBX3       porcine        induced pluripotent stem cells (iPSCs)        totipotency  
Online: 07 March 2024  
About author:  Qiaoyan Shen, E-mail:sqy@nwafu.edu.cn; Xiaojie Wu, E-mail:wuxiaojie@ nwafu.edu.cn; #Correspondence Jinlian Hua, E-mail: jinlianhua@nwsuaf.edu.cn; Mingzhi Liao, E-mail: liaomz@nwsuaf.edu.cn; Hongjiang Wei, E-mail: hongjiang-wei@126.com; Na Li, E-mail: lina2017@nwafu.edu.cn

Cite this article: 

Qiaoyan Shen, Xiaojie Wu, Ziyu Chen, Jianxiong Guo, Wei Yue, Shuai Yu, Rui Zhang, Xiaolong Wu, Heng Zhao, Qin Pan, Juqing Zhang, Zhenshuo Zhu, Xinchun Yang, Wenjing Xu, Yunxiang Li, Anmin Lei, Sha Peng, Fan Yang, Shiqiang Zhang, Gang Ren, Jun Wu, Na Li, Hongjiang Wei, Mingzhi Liao, Jinlian Hua. 2024. TBX3 orchestrates H3K4 trimethylation for porcine induced pluripotent stem cells to totipotent-like stem cells. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.02.007

Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. 2014. The expressions of stem cell markers: oct4, nanog, sox2, nucleostemin, bmi, zfx, tcl1, tbx3, dppa4, and esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anatomy & Cell Biology, 47, 1-11.

Bjerregaard B, Wrenzycki C, Strejcek F, Laurincik J, Holm P, Ochs R L, Rosenkranz C, Callesen H, Rath D, Niemann H, Maddox-Hyttel P. 2004. Expression of nucleolar-related proteins in porcine preimplantation embryos produced in vivo and in vitro. Biology of Reproduction, 70, 867-876.

Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. 2014b. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. Bmc Genomics, 15, 4.

Deng M, Chen B, Yang Y, Wan Y, Liu Z, Fu J, Wang F. 2021. Characterization of transcriptional activity during zga in mammalian scnt embryodagger. Biology of Reproduction, 105, 905-917.

Gafni O, Weinberger L, Mansour A A, Manor Y S, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna J H. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature, 504, 282-286.

Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen A, Eckersley-Maslin M A, Ahmad S, Lee Y L, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos L S, Fu B, Wang S, Yong Y, Wang X, Xue S G, Ge L, Liu Z, Huang Y, Nie T, Li P, Wu D, Pei D, Zhang Y, Lu L, Yang F, Kimber S J, Reik W, Zou X, Shang Z, Lai L, Surani A, Tam P, Ahmed A, Yeung W, Teichmann S A, Niemann H, Liu P. 2019. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 21, 687-699.

Han J, Yuan P, Yang H, Zhang J, Soh B S, Li P, Lim S L, Cao S, Tay J, Orlov Y L, Lufkin T, Ng H H, Tam W L, Lim B. 2010. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature, 463, 1096-1100.

Kalkan T, Bornelov S, Mulas C, Diamanti E, Lohoff T, Ralser M, Middelkamp S, Lombard P, Nichols J, Smith A. 2019. Complementary activity of etv5, rbpj, and tcf3 drives formative transition from naive pluripotency. Cell Stem Cell, 24, 785-801.

Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo G G, Dietmann S, Nichols J, Smith A. 2021. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell, 28, 453-471.

Klanova M, Kazantsev D, Pokorna E, Zikmund T, Karolova J, Behounek M, Renesova N, Sovilj D, Kelemen C D, Helman K, Jaksa R, Havranek O, Andera L, Trneny M, Klener P. 2021. Anti-apoptotic mcl1 protein represents critical survival molecule for most burkitt lymphomas and bcl2-negative diffuse large b-cell lymphomas. Molecular Cancer Therapeutics,21,89-99.

Lee K, Hamm J, Whitworth K, Spate L, Park K W, Murphy C N, Prather R S. 2014. Dynamics of tet family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of nanog. Developmental Biology, 386, 86-95.

Lee Y T, Ayoub A, Park S H, Sha L, Xu J, Mao F, Zheng W, Zhang Y, Cho U S, Dou Y. 2021. Mechanism for dpy30 and ash2l intrinsically disordered regions to modulate the mll/set1 activity on chromatin. Nature Communications, 12, 2953.

Li R, Zhong C, Yu Y, Liu H, Sakurai M, Yu L, Min Z, Shi L, Wei Y, Takahashi Y, Liao H K, Qiao J, Deng H, Nunez-Delicado E, Rodriguez E C, Wu J, Izpisua B J. 2019. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell, 179, 687-702.

Li Z, He S, Look A T. 2019. The mcl1-specific inhibitor s63845 acts synergistically with venetoclax/abt-199 to induce apoptosis in t-cell acute lymphoblastic leukemia cells. Leukemia, 33, 262-266.

Lv B, An Q, Zeng Q, Zhang X, Lu P, Wang Y, Zhu X, Ji Y, Fan G, Xue Z. 2019. Single-cell rna sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. Plos Biology, 17, e3000187.

Mazid M A, Ward C, Luo Z, Liu C, Li Y, Lai Y, Wu L, Li J, Jia W, Jiang Y, Liu H, Fu L, Yang Y, Ibanez D P, Lai J, Wei X, An J, Guo P, Yuan Y, Deng Q, Wang Y, Liu Y, Gao F, Wang J, Zaman S, Qin B, Wu G, Maxwell P H, Xu X, Liu L, Li W, Esteban M A. 2022. Rolling back of human pluripotent stem cells to an 8-cell embryo-like stage. Nature,605,315-324.

Niu C, Wang S, Guo J, Wei X, Jia M, Chen Z, Gong W, Qin Y, Wang X, Zhi X, Lu M, Chen S, Gu M, Zhang J, Han J J, Lan F, Meng D. 2021. Bach1 recruits nanog and histone h3 lysine 4 methyltransferase mll/set1 complexes to regulate enhancer-promoter activity and maintains pluripotency. Nucleic Acids Research, 49, 1972-1986.

Pirity M K, Dinnyes A. 2010. Tbx3: another important piece fitted into the pluripotent stem cell puzzle. Stem Cell Research & Therapy, 1, 12.

Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, Mansour A A, Caspi I, Krupalnik V, Zerbib M, Maza I, Mor N, Baran D, Weinberger L, Jaitin D A, Lara-Astiaso D, Blecher-Gonen R, Shipony Z, Mukamel Z, Hagai T, Gilad S, Amann-Zalcenstein D, Tanay A, Amit I, Novershtern N, Hanna J H. 2013. Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 502, 65-70.

Rasmussen M L, Kline L A, Park K P, Ortolano N A, Romero-Morales A I, Anthony C C, Beckermann K E, Gama V. 2018. A non-apoptotic function of mcl-1 in promoting pluripotency and modulating mitochondrial dynamics in stem cells. Stem Cell Reports, 10, 684-692.

Riveiro A R, Brickman J M. 2020. From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development, 147.

Roberts A W, Wei A H, Huang D. 2021. Bcl2 and mcl1 inhibitors for hematologic malignancies. Blood, 138, 1120-1136.

Sankar A, Lerdrup M, Manaf A, Johansen J V, Gonzalez J M, Borup R, Blanshard R, Klungland A, Hansen K, Andersen C Y, Dahl J A, Helin K, Hoffmann E R. 2020. Kdm4a regulates the maternal-to-zygotic transition by protecting broad h3k4me3 domains from h3k9me3 invasion in oocytes. Nature Cell Biology, 22, 380-388.

Sze C C, Ozark P A, Cao K, Ugarenko M, Das S, Wang L, Marshall S A, Rendleman E J, Ryan C A, Zha D, Douillet D, Chen F X, Shilatifard A. 2020. Coordinated regulation of cellular identity-associated h3k4me3 breadth by the compass family. Science Advances, 6, eaaz4764.

Tsai P H, Chien Y, Wang M L, Hsu C H, Laurent B, Chou S J, Chang W C, Chien C S, Li H Y, Lee H C, Huo T I, Hung J H, Chen C H, Chiou S H. 2019. Ash2l interacts with oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Research, 47, 10115-10133.

Vo L T, Kinney M A, Liu X, Zhang Y, Barragan J, Sousa P M, Jha D K, Han A, Cesana M, Shao Z, North T E, Orkin S H, Doulatov S, Xu J, Daley G Q. 2018. Regulation of embryonic haematopoietic multipotency by ezh1. Nature, 553, 506-510.

Waghray A, Saiz N, Jayaprakash A D, Freire A G, Papatsenko D, Pereira C F, Lee D F, Brosh R, Chang B, Darr H, Gingold J, Kelley K, Schaniel C, Hadjantonakis A K, Lemischka I R. 2015. Tbx3 controls dppa3 levels and exit from pluripotency toward mesoderm. Stem Cell Reports, 5, 97-110.

Wang X, Ping C, Tan P, Sun C, Liu G, Liu T, Yang S, Si Y, Zhao L, Hu Y, Jia Y, Wang X, Zhang M, Wang F, Wang D, Yu J, Ma Y, Huang Y. 2021. Hnrnpll controls pluripotency exit of embryonic stem cells by modulating alternative splicing of tbx3 and bptf. Embo Journal, 40, e104729.

Wei Q, Li R, Zhong L, Mu H, Zhang S, Yue L, Xiang J, Li E, Zhi M, Cao S, Han J. 2018b. Lineage specification revealed by single-cell gene expression analysis in porcine preimplantation embryos. Biology of Reproduction, 99, 283-292.

Widden H, Placzek W J. 2021. The multiple mechanisms of mcl1 in the regulation of cell fate. Communications Biology, 4, 1029.

Yang J, Ryan D J, Wang W, Tsang J C, Lan G, Masaki H, Gao X, Antunes L, Yu Y, Zhu Z, Wang J, Kolodziejczyk A A, Campos L S, Wang C, Yang F, Zhong Z, Fu B, Eckersley-Maslin M A, Woods M, Tanaka Y, Chen X, Wilkinson A C, Bussell J, White J, Ramirez-Solis R, Reik W, Gottgens B, Teichmann S A, Tam P, Nakauchi H, Zou X, Lu L, Liu P. 2017. Establishment of mouse expanded potential stem cells. Nature, 550, 393-397.

Yang M, Yu H, Yu X, Liang S, Hu Y, Luo Y, Izsvak Z, Sun C, Wang J. 2022. Chemical-induced chromatin remodeling reprograms mouse escs to totipotent-like stem cells. Cell Stem Cell, 29, 400-418.

Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, Zhu J, Xiong L, Zhu D, Li X, Yang W, Yamauchi T, Sugawara A, Li Z, Sun F, Li X, Li C, He A, Du Y, Wang T, Zhao C, Li H, Chi X, Zhang H, Liu Y, Li C, Duo S, Yin M, Shen H, Belmonte J, Deng H. 2017. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 169, 243-257.

Yeh C Y, Huang W H, Chen H C, Meir Y J. 2021. Capturing pluripotency and beyond. Cells, 10.

Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920.

Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. 2019. Stem cells: past, present, and future. Stem Cell Research & Therapy, 10, 68.

Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, Liu W, Kou X, Zhao Y, He W, Li C, Chen B, Li Y, Wang Q, Ma J, Yin Q, Kee K, Meng A, Gao S, Xu F, Na J, Xie W. 2016. Allelic reprogramming of the histone modification h3k4me3 in early mammalian development. Nature, 537, 553-557.

Zhao L, Gao X, Zheng Y, Wang Z, Zhao G, Ren J, Zhang J, Wu J, Wu B, Chen Y, Sun W, Li Y, Su J, Ding Y, Gao Y, Liu M, Bai X, Sun L, Cao G, Tang F, Bao S, Liu P, Li X. 2021. Establishment of bovine expanded potential stem cells. Proceedings of the National Academy of Sciences of the United States of America, 118.

Zhi M, Zhang J, Tang Q, Yu D, Gao S, Gao D, Liu P, Guo J, Hai T, Gao J, Cao S, Zhao Z, Li C, Weng X, He M, Chen T, Wang Y, Long K, Jiao D, Li G, Zhang J, Liu Y, Lin Y, Pang D, Zhu Q, Chen N, Huang J, Chen X, Yao Y, Yang J, Xie Z, Huang X, Liu M, Zhang R, Li Q, Miao Y, Tian J, Huang X, Ouyang H, Liu B, Xie W, Zhou Q, Wei H, Liu Z, Zheng C, Li M, Han J. 2022. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 32, 383-400.

Zhou S, Wen H, Li H. 2019. Magnolol induces apoptosis in osteosarcoma cells via g0/g1 phase arrest and p53-mediated mitochondrial pathway. Journal of Cellular Biochemistry, 120, 17067-17079.

Zhu H L, Dai L M, Xiong Y W, Shi X T, Liu W B, Fu Y T, Zhou G X, Zhang S, Gao L, Zhang C, Zhao L L, Xu X F, Huang Y C, Xu D X, Wang H. 2022. Gestational exposure to environmental cadmium induces placental apoptosis and fetal growth restriction via parkin-modulated mcl-1 degradation. Journal of Hazardous Materials, 424, 127268.

Zhu Z, Wu X, Li Q, Zhang J, Yu S, Shen Q, Zhou Z, Pan Q, Yue W, Qin D, Zhang Y, Zhao W, Zhang R, Peng S, Li N, Zhang S, Lei A, Miao Y L, Liu Z, Chen X, Wang H, Liao M, Hua J. 2021. Histone demethylase complexes kdm3a and kdm3b cooperate with oct4/sox2 to define  a pluripotency gene regulatory network. Faseb Journal, 35, e21664.

No related articles found!
No Suggested Reading articles found!