Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1359-1371    DOI: 10.1016/j.jia.2023.10.031
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A barley SS2a single base mutation at the splicing site leads to obvious changes in starch
Bang Wang*, Jing Liu*, Xiaolei Chen, Qiang Xu, Yazhou Zhang, Huixue Dong, Huaping Tang, Pengfei Qi, Mei Deng, Jian Ma, Jirui Wang, Guoyue Chen, Yuming Wei, Youliang Zheng, Qiantao Jiang#

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China

 Highlights 
A single base mutation at the splicing receptor site of SS2a resulted in gene inactivation in barley.
The mutant line exhibited increased amylose and resistant starch content.
The morphology and size distribution of starch granules were significantly altered.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

淀粉的生物合成是一个的复杂的过程依赖于多种酶的协调作用。抗性淀粉在小肠中不被消化,从而可以阻止了血糖指数的快速上升。淀粉合成酶2a(SS2a)是支链淀粉生物合成中的关键酶,对淀粉结构和性质有重要影响。本研究中,我们从大麦EMS突变体库中鉴定出了ss2a缺失突变体(M3-1413)。在突变体中,诱变产生的单碱基突变位于SS2a第一内含子的3'端的RNA剪接受体(AG),导致RNA不能正常剪辑,并产生两个异常ss2a转录本,导致ss2a基因失活。表型分析表明突变体M3-1413的淀粉结构和性质发生显著变化,具体为总淀粉含量降低,直链淀粉和抗性淀粉含量升高。本研究揭示了大麦ss2a突变机制及其对淀粉特性的影响,有助于推动大麦淀粉功能食品的开发应用。



Abstract  
Starch biosynthesis is a complex process that relies on the coordinated action of multiple enzymes.  Resistant starch is not digested in the small intestine, thus preventing a rapid rise in the glycemic index.  Starch synthase 2a (SS2a) is a key enzyme in amylopectin biosynthesis that has significant effects on starch structure and properties.  In this study, we identified an ss2a null mutant (M3-1413) with a single base mutation from an ethyl methane sulfonate (EMS)-mutagenized population of barley.  The mutation was located at the 3´ end of the first intron of the RNA splicing receptor (AG) site, and resulted in abnormal RNA splicing and two abnormal transcripts of ss2a, which caused the inactivation of the SS2a gene.  The starch structure and properties were significantly altered in the mutant, with M3-1413 containing lower total starch and higher amylose and resistant starch levels.  This study sheds light on the effect of barley ss2a null mutations on starch properties and will help to guide new applications of barley starch in the development of nutritious food products.


Keywords:  barley        EMS mutagenesis        starch synthase 2a        splicing site mutation        starch property        resistant starch  
Received: 13 July 2023   Accepted: 08 October 2023
Fund: This work was supported by the Major Program of National Agricultural Science and Technology of China (NK20220607) and the Sichuan Science and Technology Program, China (2023YFH0041).
About author:  #Correspondence Qiantao Jiang, Tel: +86-28-86290958, Fax: +86-28-82650350, E-mail: qiantaojiang@sicau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Bang Wang, Jing Liu, Xiaolei Chen, Qiang Xu, Yazhou Zhang, Huixue Dong, Huaping Tang, Pengfei Qi, Mei Deng, Jian Ma, Jirui Wang, Guoyue Chen, Yuming Wei, Youliang Zheng, Qiantao Jiang. 2025. A barley SS2a single base mutation at the splicing site leads to obvious changes in starch. Journal of Integrative Agriculture, 24(4): 1359-1371.

Asare E K, Jaiswal S, Maley J, Baga M, Sammynaiken R, Rossnagel B G, Chibbar R N. 2011. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. Journal of Agricultural and Food Chemistry59, 4743–4754.

Bertolini A C, Souza E J, Nelson J E, Huber K C. 2003. Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chemistry80, 544–549.

Cartegni L, Chew S L, Krainer A R. 2002. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nature Reviews Genetics3, 285–298.

Chen L, Huang L, Min D, Phillips A L, Wang S, Madgwick P J, Parry M A J, Hu Y. 2012. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS ONE7, 2930–2955.

Dhital S, Shrestha A K, Hasjim J, Gidley M J. 2011. Physicochemical and structural properties of maize and potato starches as a function of granule size. Journal of Agricultural and Food Chemistry59, 10151–10161.

Duque P. 2011. A role for SR proteins in plant stress responses. Plant Signaling & Behavior6, 49–54.

Englyst H N, Kingman S M, Cummings J H. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition46(Suppl 2), S33–S50.

Evers A D, O’brien L, Blakeney A B. 1999. Cereal structure and composition. Crop & Pasture Science50, 629–650.

Feng X, Rahman M M, Hu Q, Wang B, Karim H, Guzman C, Harwood W A, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, et al. 2022. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. Frontiers in Plant Science13, 1003333.

Graveley B R. 2000. Sorting out the complexity of SR protein functions. RNA6, 1197–1211.

Hazard B A, Zhang X, Colasuonno P, Uauy C, Beckles D M, Dubcovsky J. 2012. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat. Crop Science52, 1754–1766.

Henikoff S, Till B J, Comai L. 2004. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiology135, 630–636.

Jane J, Chen Y , Lee L, Mcpherson A E, Wong K, Radosavljević M, Kasemsuwan T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry76, 629–637.

Li J, Yeh A. 2001. Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering50, 141–148.

Li W, Xiao X, Zhang W, Zheng J, Luo Q, Ouyang S, Zhang G. 2014. Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Research International58, 7–14.

Liu F, Romanova N, Lee E A, Ahmed R, Evans M, Gilbert E P, Morell M, Emes M J, Tetlow I J. 2012. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. The Biochemical Journal448, 373–387.

Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H, Fan Y, Zhao J, Zhang C. 2017. Gene-indexed mutations in maize. Molecular Plant11, 496–504.

Luo J, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo V M, Tanner G J, Colgrave M L, Upadhyaya N M, Tetlow I J, Emes M J, Millar A A, Jobling S A, Morell M, Li Z. 2015. The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theoretical and Applied Genetics128, 1407–1419.

Luo M, Ding J, Li Y, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W A, Lan X, Deng M, Lu Z X, Wei Y, Zheng Y, Jiang Q. 2019. A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. Theoretical and Applied Genetics132, 2097–2109.

Ma Z, Boye J I. 2018. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition58, 1059–1083.

Moreau C, Warren F J, Rayner T, Pérez-Moral N, Lawson D M, Wang T L, Domoney C. 2022. An allelic series of starch-branching enzyme mutants in pea (Pisum sativum L.) reveals complex relationships with seed starch phenotypes. Carbohydrate Polymers288, 119386.

Motilva M, Serra A, Borràs X, Romero M, Domínguez A, Labrador A, Peiró L. 2014. Adaptation of the standard enzymatic protocol (Megazyme method) to microplaque format for β-(1,3)(1,4)-d-glucan determination in cereal based samples with a wide range of β-glucan content. Journal of Cereal Science59, 224–227.

Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research8 19, 4321–4325.

Nakamura Y, Yuki K, Park S Y, Ohya T. 1989. Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology30, 833–839.

Nilsson G, Gorton L, Bergquist K E, Nilsson U J. 1996. Determination of the degree of branching in normal and amylopectin type potato starch with 1H-NMR spectroscopy improved resolution and two-dimensional spectroscopy. Starch-Starke48, 352–357.

Nishi A, Nakamura Y, Tanaka N, Satoh H. 2001. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology127, 459–472.

Raeker M O, Gaines C S, Finney P L, Donelson T. 1998. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chemistry75, 721–728.

Rahman S, Bird A R, Regina A, Li Z, Ral J, McMaugh S, Topping D L, Morell M. 2007. Resistant starch in cereals: Exploiting genetic engineering and genetic variation. Journal of Cereal Science46, 251–260.

Reddy A S N. 2001. Nuclear pre-mRNA splicing in plants. Critical Reviews in Plant Sciences20, 523–571.

Riaz A, Alqudah A M, Kanwal F, Pillen K, Ye L Z, Dai F, Zhang G P. 2022. Advances in studies on the physiological and molecular regulation of barley tillering. Journal of Integrative Agriculture21, 689–705.

Schmidt V, Kirschner K M. 2018. Alternative pre-mRNA splicing. Acta Physiologica222, e13053.

Schrader E K, Harstad K G, Matouschek A. 2009. Targeting proteins for degradation. Nature Chemical Biology5, 815–822.

Schultz J, Copley R R, Doerks T, Ponting C P, Bork P. 2000. SMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Research28, 231–234.

Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E. 2014. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods10, 5.

Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones H D, Lafiandra D. 2010. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology10, 144.

Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D. 2015. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Science233, 127–133.

South J B, Morrison W R. 1990. Isolation and analysis of starch from single kernels of wheat and barley. Journal of Cereal Science12, 43–51.

Umemoto T, Aoki N, Lin H, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S. 2004. Natural variation in rice starch synthase IIa affects enzyme and starch properties. Functional Plant Biology31, 671–684.

Walsh S K, Lucey A, Walter J, Zannini E, Arendt E K. 2022. Resistant starch - An accessible fiber ingredient acceptable to the Western palate. Comprehensive Reviews in Food Science and Food Safety21, 2930–2955.

Yamamori M, Endo T. 1996. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics93, 275–281.

Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T. 2000. Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics101, 21–29.

Yan J, Jia J, Jiang L, Peng D, Liu S, Hou S, Yu J, Li H, Huang W. 2022. Resistance of barley varieties to Heterodera avenae in the Qinghai–Tibet Plateau, China. Journal of Integrative Agriculture21, 1401–1413.

Yang Q, Ding J, Feng X, Zhong X, Lan J, Tang H, Harwood W A, Li Z, Guzmán C, Xu Q, Zhang Y, Jiang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, et al. 2022. Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydrate Polymers285, 119238.

Zhang X, Colleoni C, Ratushna V, Sirghie-colleoni M, James M G, Myers A M. 2004. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Molecular Biology54, 865–879.

Zhang X, Gao X, Li Z, Xu L, Li Y, Zhang R, Xue J, Guo D. 2020. The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize. Journal of Integrative Agriculture19, 1554–1564.

Zobel H F. 1988. Starch crystal transformations and their industrial importance. Starch-Starke40, 1–7.

No related articles found!
No Suggested Reading articles found!