Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3209-3219    DOI: 10.1016/j.jia.2023.08.006
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Influences of large-scale farming on carbon emissions from cropping: Evidence from China

LI Ya-ling1, YI Fu-jin2, 3#, YUAN Chong-jun4

1 College of Economics and Management, Anhui Agricultural University, Hefei 230036, P.R.China
2 China Academy for Rural Development, Zhejiang University, Hangzhou 310058, P.R.China
3 School of Public Affairs, Zhejiang University, Hangzhou 310058, P.R.China
4 College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, P.R.China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

减少农业碳排放对于中国实现2030年前碳达峰的目标具有重要意义。然而,农业向规模化经营转型将会给碳减排带来不确定性。本研究基于生命周期评价法核算我国种植业的碳排放量,并使用固定效应模型估计经营规模对种植业碳排放的影响,进一步通过情景分析预测经营规模变化驱动下的种植业碳排放未来变化。研究结果显示,随着经营规模的增加,中国种植业总碳排放量呈“倒U形”变化趋势,且主要归因于化肥投入带来的碳排放变化。预测结果表明,如果经营规模继续遵循历史趋势变化,农业规模化经营转型将使中国种植业碳达峰年份推迟到2048年。但从长远来看,规模化经营转型仍然有助于减少种植业碳排放。因此,在规模化经营转型初期,应加强化肥施用减量的环境规制政策力度以减少种植业碳排放,这一发现对于其他经营规模较小的发展中国家也同样具有借鉴意义。



Abstract  

Reducing agricultural carbon emissions is important to enable carbon emission peaking by 2030 in China.  However, China’s transformation towards large-scale farming brings uncertainties to carbon emission reduction.  This study quantifies the carbon emissions from cropping based on life cycle assessment and estimates the effects of farm size on carbon emissions using a fixed effects model.  Furthermore, the variations of the carbon emissions from cropping driven by the changes in farm size in future years are projected through scenario analysis.  Results demonstrate an inverted U-shaped change in total carbon emission from cropping as farm size increases, which is dominated by the changes in the carbon emission from fertilizer.  Projections illustrate that large-scale farming transformation will postpone the peak year of total carbon emission from cropping until 2048 if the change in farm size follows a historical trend, although it is conducive to reducing total carbon emission in the long run.  The findings indicate that environmental regulations to reduce fertilizer usages should be strengthened for carbon emission abatement in the early stage of large-scale farming transformation, which are also informative to other developing countries with small farm size.

Keywords:  farm size       carbon emission        agricultural transition   
Received: 30 December 2022   Accepted: 12 June 2023
Fund: The authors gratefully acknowledge the financial support from the Natural Science Foundation of China–Bill & Melinda Gates Foundation Joint Agricultural Research Project (NSFC–BMGF; 72261147758), the National Social Science Foundation of China, the China Resource, Environmental and Development Research Institute, Nanjing Agricultural University, China and the Research Funding Project of Anhui Agricultural University, China (rc402108).
About author:  LI Ya-ling, E-mail: yaling_li@ahau.edu.cn; #Correspondence YI Fu-jin, E-mail: yifujin@zju.edu.cn

Cite this article: 

LI Ya-ling, YI Fu-jin, YUAN Chong-jun. 2023. Influences of large-scale farming on carbon emissions from cropping: Evidence from China. Journal of Integrative Agriculture, 22(10): 3209-3219.

Adamopoulos T, Restuccia D. 2014. The size distribution of farms and international productivity differences. American Economic Review104, 1667–1697.

Beran R. 1988. Prepivoting test statistics: A bootstrap view of asymptotic refinements. Journal of the American Statistical Association83, 687–697.

Van den Berg M M, Hengsdijk H, Wolf J, Van Ittersum M K, Guanghuo W, Roetter R P. 2007. The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang Province, China. Agricultural System94, 841–850.

Cameron A C, Gelbach J B, Miller D L. 2011. Robust inference with multiway clustering. Journal of Business & Economic Statistics29, 238–249.

Cameron A C, Trivedi P K. 2010. Microeconometrics Using Stata. Stata Press, College Station, TX.

Cillis D, Maestrini B, Pezzuolo A, Marinello F, Sartori L. 2018. Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions. Soil and Tillage Research183, 51–59.

Clark M A, Domingo N G, Colgan K, Thakrar S K, Tilman D, Lynch J, Azevedo I, Hill J. 2020. Global food system emissions could preclude achieving the 1.5 and 2°C climate change targets. Science370, 705–708.

Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello F N, Leip A J N F. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food2, 198–209.

D’Amour C B, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K H, Haberlh H, Creutzig F, Seto K C. 2017. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences of the United States of America114, 8939–8944.

Duan J, Ren C, Wang S, Zhang X, Reis S, Xu J, Gu B. 2021. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food2, 1014–1022.

Fan S, Rue C. 2020. The role of smallholder farms in a changing world. In: Gomez y Paloma S, Riesgo L, Louhichi K, eds. The Role of Smallholder Farms in Food and Nutrition Security. Springer International Publishing, Cham. pp. 13–28.

Galanakis C M, Rizou M, Aldawoud T M, Ucak I, Rowan N J. 2021. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends in Food Science & Technology110, 193–200.

Gong Y, Baylis K, Kozak R, Bull G. 2016. Farmers’ risk preferences and pesticide use decisions: evidence from field experiments in China. Agricultural Economics47, 411–421.

Hazen R M, Downs R T, Eleish A, Fox P, Gagné O C, Golden J J, Grew E S, Hummer D R, Hystad G, Krivovichev S V, Li C, Liu C, Ma X, Morrison S M, Pan F, Pires A J, Prabhu A, Ralph J, Runyon S E, Zhong H. 2019. Data-driven discovery in mineralogy: Recent advances in data resources, analysis, and visualization. Engineering5, 397–405.

Jacquet F, Jeuffroy M H, Jouan J, Le Cadre E, Litrico I, Malausa T, Reboud X, Huyghe C. 2022. Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development42, 8.

Jin S, Lin Y, Niu K. 2021. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China. Reform5, 29–37. (in Chinese)

Laspidou C S, Mellios N K, Spyropoulou A E, Kofinas D T, Papadopoulou M P. 2020. Systems thinking on the resource nexus: Modeling and visualisation tools to identify critical interlinkages for resilient and sustainable societies and institutions. Science of the Total Environment717, 137264.

Li Y, Wu W, Yang J, Cheng K, Smith P, Sun J, Xu X, Yue Q, Pan G. 2022. Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Science of the Total Environment824, 153898.

Lind J T, Mehlum H. 2010. With or without U? The appropriate test for a U-shaped relationship. Oxford Bulletin of Economics and Statistics72, 109–118.

Liu Q, Xiao H. 2020. The impact of farmland management scale and fiscal policy for supporting agriculture on agricultural carbon emission. Resources Science42, 1063–1073. (in Chinese)

Martin-Gorriz B, Maestre-Valero J F, Almagro M, Boix-Fayos C, Martínez-Mena M. 2020. Carbon emissions and economic assessment of farm operations under different tillage practices in organic rainfed almond orchards in semiarid Mediterranean conditions. Scientia Horticulturae261, 108978.

Masters W A, Djurfeldt A, De Haan C, Hazell P, Jayne T, Jirström M, Reardon T. 2013. Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research. Global Food Security2, 156–165.

Niroula G, Thapa G B. 2007. Impacts of land fragmentation on input use, crop yield and production efficiency in the mountains of Nepal. Land Degradation & Development18, 237–248.

Qiu H, Liu L, Li D, Zhang C. 2017. Farm size, tenure security and land productivity: An empirical study based on plot-level survey data from four provinces in China. Chinese Rural Economy6, 30–43. (in Chinese)

Rahman S. 2015. Agroecological, climatic, land elevation and socio-economic determinants of pesticide use at the farm level in Bangladesh. AgricultureEcosystems & Environment212, 187–197.

Ratnadass A, Fernandes P, Avelino J, Habib R. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development32, 273–303.

Snyder C S, Bruulsema T W, Jensen T L, Fixen P E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. AgricultureEcosystems & Environment133, 247–266.

Tan S, Heerink N, Kuyvenhoven A, Qu F. 2010. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. NJASWageningen Journal of Life Sciences57, 117–123.

Tian C, Chen Y. 2021. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS. Journal of Natural Resources36, 395–410. (in Chinese)

Unakitan G, Hurma H, Yilmaz F. 2010. An analysis of energy use efficiency of canola production in Turkey. Energy35, 3623–3627.

Verdi L, Dalla Marta A, Falconi F, Orlandini S, Mancini M. 2022. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): A case study with an ancient wheat variety. European Journal of Agronomy141, 126638.

Wang S, Bai X, Zhang X, Reis S, Chen D, Xu J, Gu B. 2021. Urbanization can benefit agricultural production with large-scale farming in China. Nature Food2, 183–191.

Wang X, Chen Y, Sui P, Yan P, Yang X, Gao W. 2017. Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain. Agricultural Systems153, 181–189.

Wei M, Yan T, Luo S. 2023. The impacts of scale management and technological progress on green and low-carbon development of agriculture: A quasi-natural experiment based on the establishment of major grain-producing areas. Chinese Rural Economy, (2), 41–65. (in Chinese)

West T O, Marland G. 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture Ecosystems & Environment91, 217–232.

Wu Y, Xi X, Tang X, Luo D, Gu B, Lam S K, Vitousek P M, Chen D. 2018. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America115, 7010–7015.

Xiong Y, Huang S, Chen F, Ye H, Wang C, Zhu C. 2012. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing4, 2033–2056.

Xu X, Li C, Guo J, Zhang L. 2022. Land transfer-in scale, land operationscale and carbon emissions from crop planting throughout the life cycle: Evidence from China rural development survey. Chinese Rural Economy11, 40–58. (in Chinese)

Yilmaz I, Akcaoz H, Ozkan B. 2005. An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy30, 145–155.

Zeng C, Stringer L C, Lv T. 2021. The spatial spillover effect of fossil fuel energy trade on COemissions. Energy223, 120038.

Zeng F. 2015. Establishment the incentive and restraint mechanisms for food security through agricultural land rental. Issues in Agricultural Economy, (1), 15–23. (in Chinese)

Zhang G, Lu F, Huang Z G, Chen S, Wang X K. 2016. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China. Chinese Journal of Applied Ecology27, 2875–2883. (in Chinese)

Zhao M, Shi R, Yao L. 2022. Analysis on the goals and paths of carbon neutral agriculture in China. Issues in Agricultural Economy, (9), 24–34. (in Chinese)

Zhu P, Su M, Yan J. 2017. Influence of the scale and stability of farmland management on farmer’s fertilizer input: Taking rice production in four counties (cities) in Jiangsu as an example. Journal of Nanjing Agricultural University (Social Sciences), 17, 85–94. (in Chinese)

Zhu W, Qi L, Wang R. 2022. The relationship between farm size and fertilizer use efficiency: Evidence from China. Journal of Integrative Agriculture21, 273–281.

[1] LIU Hao, PENG Hua, LI Li-wang, DONG Xiao-xia. The mechanism and heterogeneity of environmental regulations’ impact on the technological progress of dairy farming[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3067-3081.
[2] ZHU Wei, QI Li-xia, WANG Rui-mei. The relationship between farm size and fertilizer use efficiency: Evidence from China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 273-281.
[3] YANG Xin-ran, Kevin Z. Chen, KONG Xiang-zhi. Factors affecting the adoption of on-farm milk safety measures in Northern China - An examination from the perspective of farm size and production type[J]. >Journal of Integrative Agriculture, 2019, 18(2): 471-481.
[4] HU Ling-xiao, ZHANG Xiao-heng, ZHOU Ying-heng. Farm size and fertilizer sustainable use: An empirical study in Jiangsu, China[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2898-2909.
No Suggested Reading articles found!