Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3220-3233    DOI: 10.1016/j.jia.2023.08.005
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Are vulnerable farmers more easily influenced?  Heterogeneous effects of Internet use on the adoption of integrated pest management
LI Kai1, JIN Yu2, 3#, ZHOU Jie-hong2, 3#
1 School of Economics, Qufu Normal University, Rizhao 276826, P.R.China
2 China Academy for Rural Development, Zhejiang University, Hangzhou 310058, P.R.China
3 School of Public Affairs, Zhejiang University, Hangzhou 310058, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

互联网被认为能够给弱势农户的绿色生产转型带来更多技术红利,但这却与偏向性技术进步理论相悖。从理性忽略的视角,基于山东省1015份农户调查数据,利用内生转换probit模型分析了互联网对农户病虫害综合治理(IPM)技术采纳的影响及其原因。研究表明:(1)互联网虽有效促进了农户IPM采纳,但并未真正给弱势农户带来更多影响,较大的选择偏差导致弱势农户的技术红利被高估;(2)技术信息获取渠道差异导致农户对互联网信息的理性忽略程度存在差别,这是互联网影响异质性的重要原因;(3)对强关系网络信息渠道的过度依赖使弱势农户容易陷入信息茧房,对互联网信息产生理性忽略,因而难以被互联网信息所影响。要更好地发挥互联网对弱势农户IPM采纳甚至绿色生产转型的促进作用,不仅需要推动互联网农业技术信息服务的适老化,还应激励善于利用互联网的农户积极分享外部信息,引导弱势农户走出信息茧房。



Abstract  The Internet is believed to bring more technological dividends to vulnerable farmers during the green agriculture transformation.  However, this is different from the theory of skill-biased technological change, which emphasizes that individuals with higher levels of human capital and more technological endowments benefit more.  This study investigates the effects of Internet use on farmers’ adoption of integrated pest management (IPM), theoretically and empirically, based on a dataset containing 1 015 farmers in China’s Shandong Province.  By exploring the perspective of rational inattention, the reasons for the heterogeneity of the effects across farmers with different endowments, i.e., education and land size, are analyzed.  The potential endogeneity issues are addressed using the endogenous switching probit model.  The results reveal that: (1) although Internet use significantly positively affects farmers’ adoption of IPM, vulnerable farmers do not benefit more from it.  Considerable selection bias leads to an overestimation of technological dividends for vulnerable farmers; (2) different sources of technology information lead to the difference in the degree of farmers’ rational inattention toward Internet information, which plays a crucial role in the heterogeneous effect of Internet use; and (3) excessive dependence on strong-tie social network information sources entraps vulnerable farmers in information cocoons, hindering their ability to reap the benefits of Internet use fully.  Therefore, it is essential to promote services geared towards elderly-oriented Internet agricultural technology information and encourage farmers with strong Internet utilization skills to share technology information with other farmers actively.
Keywords:  Internet use       IPM        vulnerable farmers        technological dividends        endogenous switching probit model  
Received: 04 December 2022   Accepted: 26 May 2023
Fund: The work was supported by the National Social Science Fund of China (20CGL027).
About author:  LI Kai, E-mail: likaiqfsfse@qfnu.edu.cn; #Correspondence JIN Yu, E-mail: jinyu@zju.edu.cn; ZHOU Jie-hong, Tel: +86-571-56337045, E-mail: runzhou@zju.edu.

Cite this article: 

LI Kai, JIN Yu, ZHOU Jie-hong. 2023. Are vulnerable farmers more easily influenced?  Heterogeneous effects of Internet use on the adoption of integrated pest management. Journal of Integrative Agriculture, 22(10): 3220-3233.

Abudulai A, Huffman W. 2014. The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Economics90, 26–43.

Acemoglu D. 2002. Technical change, inequality, and the labor market. Journal of Economic Literature40, 7–72.

Aker J C, Ghosh I, Burrell J. 2016. The promise (and pitfalls) of ICT for agriculture initiatives. Agricultural Economics47, 35–48.

Akerman A, Leuven E, Mogstad M. 2022. Information frictions, internet, and the relationship between distance and trader. American Economic Journal (Applied Economics), 14, 133–163.

Amin M, Islam A M. 2022. Does manager education play a role in the productivity of informal firms in developing economies? Evidence from firm-level surveys. Review of Development Economics26, 962–984.

Banerjee A, Breza E, Chandrasekhar A G, Golub B. 2018. When less is more: Experimental evidence on information delivery during India’s demonetization. The Review of Economic Studies2023, rdad068.

Barnett-Howell Z, Mobarak A M. 2021. Social networks analysis in agricultural economies. Handbook of Agricultural Economics Elsevier5, 4613–4652.

Beaman L, Benyishay A, Magruder J, Mobarak A M. 2021. Can network theory-based targeting increase technology adoption? American Economic Review111, 1918–1943.

Benyishay A, Mobarak A M. 2019. Social learning and incentives for experimentation and communication. The Review of Economic Studies86, 976–1009.

Bonfadelli H. 2002. The Internet and knowledge gaps: A theoretical and empirical investigation. European Journal of Communication17, 65–84.

Bowen R, Morris W. 2019. The digital divide: Implications for agribusiness and entrepreneurship. Lessons from wales. Journal of Rural Studies72, 75–84.

Cai Y, Qi W, Yi F M. 2022. Mobile Internet adoption and technology adoption extensity: evidence from litchi growers in southern China. China Agricultural Economic Review14, 106–121.

Caplin A, Dean M. 2015. Revealed preference, rational inattention, and costly information acquisition. American Economic Review105, 2183–2203.

Cole S A, Fernando A N. 2021. ‘Mobile’izing agricultural advice technology adoption diffusion and sustainability. The Economic Journal131, 192–219.

Creissen H E, Jones P J, Tranter R B, Girling R D, Jess S, Burnett F J, Gaffney M, Thorne F S, Kildea T. 2021. Identifying the drivers and constraints to adoption of IPM among arable farmers in the UK and Ireland. Pest Management Science77, 4148–4158.

Deng X, Xu D, Zeng M, Qi Y B. 2019. Does Internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy89, 104243.

Fang G, Brooks J M, Chrischilles E A. 2012. Apples and oranges? Interpretations of risk adjustment and instrumental variable estimates of intended treatment effects using observational data. American Journal of Epidemiology175, 60–65.

Fei X T. 2013. Rural China. Zhonghua Book Company, Beijing. pp. 24–28. (in Chinese)

Gao Y, Zhao D Y, Yu L L, Yang H R. 2020. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China. Journal of Rural Studies76, 173–183.

Guha P. 2022. The effects of school-based management on Indian government schools. Review of Development Economics26, 2090–2108.

Gupta A, Ponticelli J, Tesei A. 2020. Information, technology adoption and productivity: The role of mobile phones in agriculture. NBER Working Papers, doi10.2139/ssrn.3609644.

Haile K K, Nillesen E, Tirivayi N. 2020. Impact of formal climate risk transfer mechanisms on risk-aversion: Empirical evidence from rural Ethiopia. World Development130, 104930.

Handel B, Schwartzstein J. 2018. Frictions or mental gaps: What’s behind the information we (don’t) use and when do we care? Journal of Economic Perspectives32, 155–178.

Hou J Y, Huo X X, Yin R S. 2019. Does computer usage change farmers’ production and consumption? Evidence from China. China Agricultural Economic Review11, 387–410.

IPCC. 2019. Summary for policymakers. In: Shukla P R, Skea J, Calvo Buendía E, et al., eds., Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC, Geneva, Switzerland. p. 23.

Kabir M H, Rainis R. 2015. Adoption and intensity of integrated pest management (IPM) vegetable farming in Bangladesh: An approach to sustainable agricultural development. EnvironmentDevelopment and Sustainability17, 1413–1429.

Kahneman D. 1973. Attention and Effort. Englewood Cliffs, New Jersey. pp. 5–11.

Kaila H, Tarp F. 2019. Can the Internet improve agricultural production? Evidence from Viet Nam. Agricultural Economics50, 675–691.

Khan N, Ray R L, Kassem H S, Ihtisham M, Abdullah, Asongu S A, Ansah S, Zhang S. 2021. Toward cleaner production: Can mobile phone technology help reduce inorganic fertilizer application? Evidence using a national level dataset. Land10, 1023.

Khan N, Ray R L, Zhang S, Osabuohien E, Ihtisham M. 2022. Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technology in Society68, 101866.

Li B Z, Zhuo N, Ji C, Zhu Q B. 2022. Influence of smartphone-based digital extension service on farmers’ sustainable agricultural technology adoption in China. International Journal of Environmental Research and Public Health19, 9639.

Li C S, Ma W L, Mishra A K, Gao L L. 2020. Access to credit and farmland rental market participation: Evidence from rural China. China Economic Review63, 101523.

Li F D, Yang P, Zhang K J, Yin Y S, Zhang Y N, Yin C B. 2022. The influence of smartphone use on conservation agricultural practice: Evidence from the extension of rice-green manure rotation system in China. Science of the Total Environment813, 152555.

Li J P, Ma W L, Wang P C, Meng X H. 2023. Farmers’ willingness to transform untreated livestock manure into organic fertilizer: Does information technology adoption make a difference? EnvironmentDevelopment and Sustainability, doi: 10.1007/s10668–023–02920-y.

Li K, Li Q. 2023. Social embeddedness and agricultural technology diffusion from the perspective of scale differentiation - A case study from China. International Food and Agribusiness Management Review26, 123–138.

Lokshin M, Sajaia Z. 2011. Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors. Stata Journal11, 368–385.

Luo Q F, Zhao Q F. 2022. A study of the influence and mechanism of Internet use on peasant household income growth. Economic Survey39, 34–44. (in Chinese)

Ma Q H, Zheng S F, Deng P. 2022. Impact of internet use on farmers’ organic fertilizer application behavior under the climate change context: The role of social network. Land11, 1601.

Ma W L, Abdulai A. 2016. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy58, 94–102.

Ma W L, Abdulai A. 2019. IPM adoption, cooperative membership and farm economic performance: Insight from apple farmers in China. China Agricultural Economic Review11, 218–236.

Ma W L, Nie P, Zhang P, Renwick A. 2020a. Impact of Internet use on economic well-being of rural households: Evidence from China. Review of Development Economics24, 503–523.

Ma W L, Renwick A, Nie P, Tang J J, Cai R. 2018. Off-farm work, smartphone use and household income: Evidence from rural China. China Economic Review52, 80–94.

Ma W L,Wang X. 2020. Internet use, sustainable agricultural practices and rural incomes: Evidence from China. Australian Journal of Agricultural and Resource Economics64, 1087–1112.

Ma W L, Zheng H Y. 2022. Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics66, 72–92.

Ma W L, Zhou X S, Liu M. 2020b. What drives farmers’ willingness to adopt e-commerce in rural China? The role of Internet use. Agribusiness36, 159–163.

MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). 2018. Technical guidelines for agricultural green development (2018–2030). [2022-8-1]. http://www.moa.gov.cn/gk/ghjh_1/201807/t20180706_6153629.htm (in Chinese)

Minah M. 2022. What is the influence of government programs on farmer organizations and their impacts? Evidence from Zambia. Annals of Public and Cooperative Economics93, 29–53.

NBSC (National Bureau of Statistics of China). 2021. China Statistical Yearbook. China Statistics Press, Beijing, China. (in Chinese)

Nguyen T T, Nguyen T T, Grote U. 2022. Internet use, natural resource extraction and poverty reduction in rural Thailand. Ecological Economics196, 107417.

Nguyen T T, Nguyen T T, Grote U. 2023. Internet use and agricultural productivity in rural Vietnam. Review of Development Economics27, 1309–1326.

Nie P, Ma W L, Sousa-Poza A. 2021. The relationship between smartphone use and subjective well-being in rural China. Electronic Commerce Research21, 983–1009.

Ogutu S O, Okello J J, Otieno D J. 2014. Impact of information and communication technology-based market information services on smallholder farm input use and productivity: The case of Kenya. World Development64, 311–321.

Oliver D M, Zheng Y, Naylor L A, Murtagh M, Waldron S, Peng T. 2020. How does smallholder farming practice and environmental awareness vary across village communities in the karst terrain of southwest China? AgricultureEcosystems & Environment288, 106715.

Pan Y X, Ren Y X, Luning P A. 2021. Factors influencing Chinese farmers’ proper pesticide application in agricultural products - A review. Food Control122, 107788.

Rogers E M. 2003. Diffusion of Innovations. 5th ed. Free Press, New York. pp. 282–285.

Shen Z Y, Wang S K, Boussemart J P, Hao Y. 2022. Digital transition and green growth in Chinese agriculture. Technological Forecasting and Social Change181, 121742.

Shi L, Shi G C, Qiu H G. 2019. General review of intelligent agriculture development in China. China Agricultural Economic Review11, 39–51.

Simon H A. 1997. Models of Bounded RationalityEmpirically Grounded Economic Reason. MIT Press, London. pp. 291–294.

Sims C A. 2003. Implications of rational inattention. Journal of Monetary Economics50, 665–690.

Sun M Y. 2021. Changes in the supply mode of grass-roots agricultural technology services and the dilemma of small farmers in acquiring technology. Issues in Agricultural Economy, (3), 40–52. (in Chinese)

Sun S Y, Hu R F, Zhang C. 2022. Does ICT adoption increase agricultural labor productivity? Evidence from 1122 farm households in 4 Provinces. World Agriculture, (12), 95–106. (in Chinese)

Twumasi M A, Jiang Y, Asante D, Addai B, Akuamoah-Boateng S, Fosu P. 2021. Internet use and farm households food and nutrition security nexus: The case of rural Ghana. Technology in Society65, 101592.

Vatsa P, Li J P, Luu P Q, Botero R J C. 2022. Internet use and consumption diversity: Evidence from rural China. Review of Development Economics27, 1287–1308.

Wachenheim C, Fan L, Zheng S. 2021. Adoption of unmanned aerial vehicles for pesticide application: Role of social network, resource endowment, and perceptions. Technology in Society64, 101470.

Walter A, Finger R, Huber R, Buchmann N. 2017. Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America114, 6148–6150.

Wu Y Y, Xi X, Tang X, Luo D M, Gu B J, Lam S K, Vitosek P M, Chen D L. 2018. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America115, 7010–7015.

Xie H L, Huang Y Q. 2021. Influencing factors of farmers’ adoption of pro-environmental agricultural technologies in China: Meta-analysis. Land Use Policy109, 105622.

Xiong H, Xiao L P. 2021. The peer effect in innovation diffusion: A case study based on the adoption of new agricultural varieties. Journal of Huazhong Agricultural University (Social Sciences Edition), (3), 93–106, 187–188. (in Chinese)

Yang W, Wang L. 2023. Impact of farmer group participation on the adoption of sustainable farming practices - Spatial analysis of New Zealand dairy farmers. Annals of Public and Cooperative Economics94, 701–717.

Yuan F, Tang K, Shi Q H. 2021. Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environmental Science and Pollution Research28, 6005–6017.

Yuan H. 2021. Internet use and mental health problems among older people in Shanghai, China: The moderating roles of chronic diseases and household income. Aging and Mental Health25, 657–663.

Zhang L, Luo B L. 2022. The logic of chemical use reduction in agriculture: An analyzing structure. Issues in Agricultural Economy4, 15–26. (in Chinese)

Zhang M M, Li Y J. 2014. The reason why farmers “passively trust” agricultural materials retailers: A case study from the perspective of social network embedding. China Rural Survey5, 25–37. (in Chinese)

Zhang Y L, Li Q Y. 2022. The impact of the Internet use on the income of farmers in poor areas - Based on the survey data of farmers in poor village in Gansu Province. Management Review34, 130–141, 204. (in Chinese)

Zhao Q Q, Pan Y, Xia X L. 2021. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environmental Science and Pollution Research28, 2063–2073.

Zhao X F, Zhao X Y. 2018. Construction of social service capacity of new agricultural business entities and the prospect of small peasant economy. Issues in Agricultural Economy4, 99–107. (in Chinese)

Zheng H H, Ma W l, Li J, Botero J. 2023. Relationship between Internet use and negative affect. Applied Research in Quality of Life18, 1693–1713.

Zheng H Y, Ma W L. 2023. Economic benefits of Internet use for smallholder wheat farmers. Applied Economics, doi: 10.1080/00036846.2023.2167928.

Zheng H Y, Ma W L, Wang F, Li G C. 2021. Does Internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis. Food Policy102,102044.

Zheng Y Y, Zhu T H, Wei J. 2022. Does Internet use promote the adoption of agricultural technology? Evidence from 1 449 farm households in 14 Chinese provinces. Journal of Integrative Agriculture21, 282–292.

Zhou J. 2017. Reconstruction of agricultural socialization service system and the plight of small farmers under the background of land transfer. Journal of Nanjing Agricultural University (Social Sciences Edition), 17, 141–151, 166. (in Chinese)

Zhou X L, Cui Y W, Zhang S P. 2020. Internet use and rural residents’ income growth. China Agricultural Economic Review12, 315–327.

Zhu Q B, Bai J F, Peng C, Zhu C. 2020. Do ICTs boost agricultural productivity? China Economist15, 9–26.

Zhu Q B, Zhu C, Peng C, Bai J F. 2022. Can information and communication technologies boost rural households’ income and narrow the rural income disparity in China? China Economic Quarterly International2, 202–214.

Zhu Z K, Ma W L, Leng C X, Nie P. 2021. The relationship between happiness and consumption expenditure: evidence from rural China. Applied Research Quality Life16, 1587–1611.

[1] ZHENG Yang-yang, ZHU Tie-hui, JIA Wei. Does Internet use promote the adoption of agricultural technology?  Evidence from 1 449 farm households in 14 Chinese provinces[J]. >Journal of Integrative Agriculture, 2022, 21(1): 282-292.
No Suggested Reading articles found!