Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2632-2647    DOI: 10.1016/j.jia.2022.10.011
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions

Berhane S. GEBREGZIABHER1, 2*, ZHANG Sheng-rui1*, Muhammad AZAM1, QI Jie1, Kwadwo G. AGYENIM-BOATENG1, FENG Yue1, LIU Yi-tian1, LI Jing1, LI Bin3#, SUN Jun-ming1#

1 National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 Crop Sciences Research Department, Mehoni Agricultural Research Center, Maichew 7020, Ethiopia
3 MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

厘清大豆种质籽粒中的类胡萝卜素组分和含量对大豆种质营养品质评价具有重要意义。本研究针对遗传多样性丰富的中国大豆种质的类胡萝卜素和叶绿素含量进行了系统分析,并揭示了不同营养品质组分间的相关性。结果显示基因型、种植年份、种质类型、子叶色和生态区来源显著影响籽粒中类胡萝卜素和叶绿素含量,其平均类胡萝卜素总含量变化范围为8.15-14.72 µg g-1。大豆农家种的类胡萝卜素含量是栽培种的1.2倍,特别是绿子叶种质的类胡萝卜素和叶绿素含量显著高于黄子叶种质。需要指出的是单一组分中叶黄素的含量是最高的,其变化范围为1.35-37.44 µg g-1。类胡萝卜素和叶绿素含量与其他品质组分显著相关,这有利于育种者在强化类胡萝卜素含量同时而不影响其他品质组分。我们结果证明了大豆籽粒中的类胡萝卜素含量是丰富的,但其积累宜受遗传因素、种质类型和种质来源的显著影响。我们还鉴定了一批高类胡萝卜素含量的大豆新种质,可以为大豆育种、食品加工和化妆品行业利用。



Abstract  Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.  This study investigated the variability in the concentrations of carotenoids and chlorophylls and revealed their associations with other nutritional quality traits in a genetically diverse set of Chinese soybean accessions comprised of cultivars and landraces.  Genotype, planting year, accession type, seed cotyledon color, and ecoregion of origin significantly influenced the accumulation of carotenoids and chlorophylls.  The mean total carotenoid content was in the range of 8.15–14.72 µg g–1 across the ecoregions.  The total carotenoid content was 1.2-fold higher in the landraces than in the cultivars.  Soybeans with green cotyledons had higher contents of carotenoids and chlorophylls than those with yellow cotyledons.  Remarkably, lutein was the most abundant carotenoid in all the germplasms, ranging from 1.35–37.44 µg g–1.  Carotenoids and chlorophylls showed significant correlations with other quality traits, which will help to set breeding strategies for enhancing soybean carotenoids without affecting the other components.  Collectively, our results demonstrate that carotenoids are adequately accumulated in soybean seeds, however, they are strongly influenced by genetic factors, accession type, and germplasm origin.  We identified novel germplasms with the highest total carotenoid contents across the various ecoregions of China that could serve as the genetic materials for soybean carotenoid breeding programs, and thereby as the raw materials for food sectors, pharmaceuticals, and the cosmetic industry.
Keywords:  accession type       carotenoid        chlorophyll        ecoregion        geographical distribution        Pearson’s correlation        soybean (Glycine max L. Merrill)  
Received: 11 May 2022   Accepted: 09 September 2022
Fund: 

This work was financially supported by the National Natural Science Foundation of China (32161143033 and 32001574) and the Agricultural Science and Technology Innovation Program of CAAS (2060203-2).

About author:  Berhane S. Gebregziabher, E-mail: berhane76@gmail.com; ZHANG Sheng-rui, E-mail: zhangshengrui@caas.cn; #Correspondence SUN Jun-ming, Tel: +86-10-82105805, E-mail: sunjunming@caas.cn; LI Bin, Tel/Fax: +86-10-82105805, E-mail: libin02@caas.cn * These authors contributed equally to this study.

Cite this article: 

Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. 2023. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions. Journal of Integrative Agriculture, 22(9): 2632-2647.

Abdelghany A M, Zhang S, Azam M, Shaibu A S, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J. 2020. Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. The Crop Journal8, 635–644.

Agyenim-Boateng K G, Zhang S, Islam S, Gu Y, Li B, Azam M, Abdelghany A M, Qi J, Ghosh S, Shaibu A S, Gebregziabher B S, Feng Y, Li J, Li Y, Zhang C, Qiu L, Liu Z, Liang Q, Sun J. 2022. Profiling of naturally occurring folates in a diverse soybean germplasm by HPLC-MS/MS. Food Chemistry384, 132520.

Ashokkumar K, Diapari M, Jha A B, Tar’an B, Arganosa G, Warkentin T D. 2015. Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. Journal of Food Composition and Analysis43, 49–60.

Azam M, Zhang S, Abdelghany A M, Shaibu A S, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J. 2020. Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Research International130, 108957.

Britz S J, Kremer D F, Kenworthy W J. 2008. Tocopherols in soybean seeds: Genetic variation and environmental effects in field-grown crops. Journal of the American Oil Chemists’ Society85, 931–936.

Brotosudarmo T H P, Limantara L, Chandra R D, Heriyanto. 2018. Chloroplast pigments: Structure, function, assembly and characterization. In: Ratnadewi D, Hamim H, eds., Plant Growth and Regulation  Alterations to Sustain Unfavorable Conditions. IntechOpen, London, UK. pp. 44–59.

Chatterjee C, Gleddie S, Xiao C W. 2018. Soybean bioactive peptides and their functional properties. Nutrients10, 1211.

Deng J C, Li X M, Xiao X L, Wu H J, Yang C Q, Long X Y, Zhang Q H, Iqbal N, Wang X C, Yong T W, Du J B, Yang F, Liu W G, Zhang J, Wu X L, Wu Y S, Yang W Y, Liu J. 2022. Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field. Journal of Integrative Agriculture21, 336–350.

Dias M G, Olmedilla-alonso B, Hornero-mendez D, Osorio C, Vargas-murga L, Meléndez-martínez A J. 2018. A comprehensive database of carotenoid contents in Ibero-American foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactive. Journal of Agricultural and Food Chemistry66, 5055–5107.

Dong Y S, Zhao L M, Liu B, Wang Z W, Jin Z Q, Sun H. 2004. The genetic diversity of cultivated soybean grown in China. Theoretical and Applied Genetics108, 931–936.

Dwivedi S L, Ceccarelli S, Blair M W, Upadhyaya H D, Are A K, Ortiz R. 2016. Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science21, 31–42.

Ebert A W, Chang C H, Yan M R, Yang R Y. 2017. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage. Food Chemistry237, 15–22.

Fernández-marín B, Míguez F, Méndez-fernández L, Agut A, Becerril J M, García-Plazaola J I, Kranner I, Colville L. 2017. Seed carotenoid and tocochromanol composition of wild fabaceae species is shaped by phylogeny and ecological factors. Frontiers in Plant Science8, 1428.

Fernández-marín B, Milla R, Martín-Robles N, Arc E, Kranner I, Becerril J M, García-Plazaola J I. 2014. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology14, 1599.

Ferruzzi M G, Blakeslee J. 2007. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research27, 1–12.

Gálvez A P, Viera I, Roca M. 2020. Carotenoids and chlorophylls as antioxidants. Antioxidants9, 505.

Gebregziabher B S, Zhang S, Ghosh S, Shaibu A S, Azam M, Abdelghany A M, Qi J, Agyenim-Boateng K G, Htway H T P, Feng Y, Ma C, Li Y, Li J, Li B, Qiu L, Sun J. 2022. Origin, maturity group and seed coat color influence carotenoid and chlorophyll concentrations in soybean seeds. Plants11, 848.

Gebregziabher B S, Zhang S, Qi J, Azam M, Ghosh S, Feng Y, Huai Y, Li J, Li B, Sun J. 2021. Simultaneous determination of carotenoids and chlorophylls by the HPLC-UV-VIS method in soybean seeds. Agronomy11, 758.

Ghosh S, Zhang S, Azam M, Qi J, Abdelghany A M, Shaibu A S, Gebregziabher B S, Feng Y, Huai Y, Htway H T P, Agyenim-Boateng K G, Liu Y, Feng H, Li J, Song W, Li B, Sun J. 2021. Seed tocopherol assessment and geographical distribution of 1 151 Chinese soybean accessions from diverse ecoregions. Journal of Food Composition and Analysis100, 103932.

Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3The Plant Journal80, 937–950.

Hirschberg J. 1999. Production of high-value compounds: Carotenoids and vitamin E. Current Opinion in Biotechnology10, 186–191.

Huang J, Guo N, Li Y, Sun J, Hu G, Zhang H, Li Y, Zhang X. 2016. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. BMC Genetics17, 85.

Kaga A, Shimizu T, Watanabe S, Tsubokura Y, Katayose Y, Harada K, Vaughan D A, Tomooka N. 2012. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections. Breeding Science, 61, 566–592.

Kan L, Nie S, Hu J, Wang S, Bai Z, Wang J, Zhou Y, Jiang J, Zeng Q, Song K. 2018. Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chemistry260, 317–326.

Kanamaru K, Wang S, Abe J, Yamada T, Kitamura K. 2006. Identification and characterization of wild soybean (Glycine soja Sieb. Et Zecc.) strains with high lutein content. Breeding Science56, 231–234.

Kim M, Kim J K, Kim H J, Pak J H, Lee J, Kim D, Choi K, Jung H W, Lee J, Chung Y, Ha S. 2012. Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS ONE, 7, e48287.

Lee J, Hwang Y S, Kim S T, Yoon W B, Han W Y, Kang I K, Choung M G. 2017. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chemistry214, 248–258.

Lee J D, Shannon J G, So Y S, Sleper D A, Nelson R L, Lee J H, Choung M G. 2009. Environmental effects on lutein content and relationship of lutein and other seed components in soybean. Plant Breeding128, 97–100.

Li X, Wang K, Jia J. 2009. Genetic diversity and differentiation of Chinese wild soybean germplasm (Gsoja Sieb. & Zuce.) in geographical scale revealed by SSR markers. Plant Breeding128, 658–664.

Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z, Guan Y, Zhu L, Ning X, Smulders M J M, Li W, Piao R, Cui Y, Yu Z, Guan M, Chang R, et al. 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theoretical and Applied Genetics117, 857–871.

Marles M A S, Warkentin D, Bett K E. 2012. Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (Pisum sativum L.). Journal of the Science of Food and Agriculture93, 463–470.

Monma M, Ito M, Saito M, Chikuni K. 1994. Carotenoid components in soybean seeds varying with seed color and maturation stage. BioscienceBiotechnology and Biochemistry58, 926–930.

Qi J, Zhang S, Azam M, Shaibu A S, Abdelghany A M, Feng Y, Huai Y, Feng H, Liu Y, Ma C, Gebregziabher B S, Ghosh S, Li J, Li B, Qiu L, Sun J. 2022. Profiling seed soluble sugar compositions in 1164 Chinese soybean accessions from major growing ecoregions. The Crop Journal10, 1825–1831.

Qiu L J, Chen P Y, Liu Z X, Li Y H, Guan R X, Wang L H, Chang R Z. 2011. The worldwide utilization of the Chinese soybean germplasm collection. Plant Genetic Resources- Characterization and Utilization9, 109–122.

Rao A V, Rao L G. 2007. Carotenoids and human health. Pharmacological Research55, 207–216.

Rezaei M K, Deokar A, Tar B. 2016. Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Fronteirs in Plant Science, 7, 1867.

Schoefs B. 2002. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science and Technology13, 361–371.

Seguin P, Tremblay G, Pageau D, Liu W, Turcotte P. 2011. Soybean lutein concentration: Impact of crop management and genotypes. Crop Science51, 1151–1160.

Singh B P, Yadav D, Vij S. 2019. Soybean bioactive molecules: Current trend and future prospective. In: Mérillon J M, Ramawat K G, eds., Bioactive Molecules in Food. Springer International Publishing, Cham. pp. 267–294.

Song W, Yang R, Wu T, Wu C, Sun S, Zhang S, Jiang B, Tian S, Liu X, Han T. 2016. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. Journal of Agricultural and Food Chemistry64, 4121–4130.

Song W, Yang R, Yang X, Sun S, Mentreddy S R, Jiang B, Wu T, Tian S, Sapey E, Wu C, Hou W, Ren G, Han T. 2018. Spatial differences in soybean bioactive components across China and their influence by weather factors. The Crop Journal6, 659–668.

Sun J, Sun B, Han F, Yan S, Yang H, Akio K. 2011. Rapid HPLC method for etermination of 12 isoflavone components in soybean seeds. Agricultural Sciences in China10, 70–77.

Teng W L, Feng W J, Zhang J Y, Xia N, Guo J, Li W, Wu D P, Zhao X, Han Y P. 2017. Identification of quantitative trait loci underlying lutein content in soybean seeds across multiple environments. Journal of Agricultural Science155, 1263–1271.

Wang L X, Lin F Y, Li L H, LI W, Yan Z, Luan W J, Piao R H, Guan Y, Ning X C, Zhu L, Ma Y S, Dong Z M, Zhang H Y, Zhang Y Q, Guan R X, Li Y H, Liu Z X, Chang R Z, Qiu L J. 2016. Genetic diversity center of cultivated soybean (Glycine max) in China - New insight and evidence for the diversity center of Chinese cultivated soybean. Journal of Integrative Agriculture15, 2481–2487.

Wang S, Kanamaru K, Li W, Abe J, Yamada T, Kitamura K. 2007. Simultaneous accumulation of high contents of α-tocopherol and lutein is possible in seeds of soybean (Glycine max (L.) Merr.). Breeding Science57, 297–304.

Whent M, Hao J, Slavin M, Zhou M, Song J, Kenworthy W I, Yu L L. 2009. Effect of genotype, environment, and their interaction on chemical composition and antioxidant properties of low-linolenic soybeans grown in Maryland. Journal of Agricultural and Food Chemistry57, 10163–10174.

Zhang B, Deng Z, Tang Y, Chen P, Liu R, Ramdath D D, Liu Q, Hernandez M, Tsao R. 2014. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry161, 296–304.

Zhang L X, Liu W, Tsegaw M, Xu X, Qi Y P, Sapey E, Liu L P, Wu T T, Sun S, Han T F. 2020. Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture19, 295–310.

Zhang J, Wang X, Lu Y, Bhusal S J, Song Q, Cregan P B, Yen Y, Brown M, Jiang G L. 2018. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant11, 460–472.

[1] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
No Suggested Reading articles found!