Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2882-2892    DOI: 10.1016/j.jia.2023.02.038
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Predicting and delineating soil temperature regimes of China using pedotransfer function

BAO Wan-kui1, 2*, LEI Qiu-liang2*, JIANG Zhuo-dong1#, SUN Fu-jun1, ZHANG Tian-peng2, HU Ning3, WANG Qiu-bing1#

1 College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, P.R.China

2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, P.R.China

3 School of Food and Biological Engineering, Hezhou University, Hezhou 542899, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤温度状况对土壤分类和土地利用至关重要。按照中国土壤系统分类,土壤温度状况通常是依据土表下50 cm深度处的年均土壤温度(MAST50)来确定的。然而,由于缺乏多年实测数据且难以准确估算MAST50,中国土壤温度状况的预测和划分目前仍然是土壤学研究的关键问题。本研究通过探究MAST50空间分布与环境因素之间的关系,预测MAST50在全国范围内的空间分布,并生成中国土壤温度状况空间分布图。本研究基于全国386个国家气象站1971-2000年的MAST50,以及全国2048个国家气象站1971-2000年的年均气温(MAAT),利用集成线性回归克里格模型,建立了用以预测我国各个区域MAST50的分区土壤转换函数模型。研究结果表明,MAAT是影响MAST50最重要的环境因素。本研究进一步评估所建立模型的精度,基于验证数据集的分区模型平均绝对误差(MAE)和均方根误差(RMSE)分别是0.66 oC0.78 oC,而全国统一模型的MAERMSE分别为0.83 oC0.96 oC。结果表明,本研究提出的分区土壤转换函数模型精度较高,可以明显提高MAST50预测的准确性。基于此,本研究进一步预测并划分了全国土壤温度状况空间分布。研究结果不仅进一步完善了中国土壤系统分类,还为促进分类成果广泛应用,以及土地可持续利用和管理提供了数据支撑。



Abstract  Soil temperature regime (STR) is important for soil classification and land use.  Generally, STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm (MAST50) according to the Chinese Soil Taxonomy (CST).  However, delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.  The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.  Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.  The MAST50 was calculated as the average mean annual soil temperature (MAST) from 1971–2000 between 40 and 80 cm depths.  In addition, 2 048 mean annual air temperature (MAAT) measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.  A zonal pedotransfer function (PTF) was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.  The results showed that MAAT was the most important variable related to the variation of MAST50.  The zonal PTF was evaluated with a 10% validation dataset with a mean absolute error (MAE) of 0.66°C and root mean square error (RMSE) of 0.78°C, which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C, respectively.  This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.  Based on the prediction results, an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support.
Keywords:  soil temperature        soil temperature regimes        Soil Taxonomy        pedotransfer function  
Received: 13 October 2022   Accepted: 26 November 2022
Fund: The study was funded by the National Key Basic Research Special Foundation of China (2021FY100405), the National Natural Science Foundation of China (U20A20114, 42201069 and 42077002), and the Fundamental Research Funds for Central Non-profit Scientific Institution, China (1610132018012).
About author:  BAO Wan-kui, E-mail: baowankui@caas.cn; LEI Qiu-liang, E-mail: leiqiuliang@caas.cn; #Correspondence JIANG Zhuo-dong, E-mail: zhuodongjiang@163.com; WANG Qiu-bing, E-mail: qbwang@syau.edu.cn * These authors contributed equally to this study.

Cite this article: 

BAO Wan-kui, LEI Qiu-liang, JIANG Zhuo-dong, SUN Fu-jun, ZHANG Tian-peng, HU Ning, WANG Qiu-bing. 2023. Predicting and delineating soil temperature regimes of China using pedotransfer function. Journal of Integrative Agriculture, 22(9): 2882-2892.

Arrouays D, Grundy M G, Hartemink A E, Hempel J W, Heuvelink G B, Hong S Y, Lagacherie P, Lelyk G, McBratney A B, McKenzie N J, Mendonca-Santos L, Minasny B, Montanarella L, Odeh I O A, Sanchez P A, Thompson J A, Zhang G L. 2014. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Advances in Agronomy125, 93–134.

Bai Y, Scott T A, Min Q. 2014. Climate change implications of soil temperature in the Mojave Desert, USA. Frontiers of Earth Science8, 302–308.

Barringer J R F, Lilburne L R. 2000. Developing fundamental data layers to support environmental modeling in New Zealand. In: Proceedings of 4th International Conference on Integrating GI Sand Environmental Modeling. Banff, Alberta, Canada. pp. 1–9.

Carter B J, Ciolkosz E J. 1980. Soil temperature regimes of the Central Appalachians. Soil Science Society of America Journal, 44, 1052–1058.

Chen L Z. 2015. Flora and Vegetation Geography of China. Science Press, China. (in Chinese)

Cheng Q P, Wang P, Xu Q. 2017. Temporal and spatial variation characteristics of surface temperature in Yunnan during 1960–2013. Research of Soil and Water Conservation24, 111–121, 397. (in Chinese)

D’Avello T, Bathgate J, Thompson J A. 2021. Modeling the thermic soil temperature regime boundary of the eastern United States. Soil Science Society of America Journal85, 2100–2114.

Fang J Y, Song Y C, Liu H Y, Piao S L. 2002. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica44, 1105–1122.

Fang S, Zhang X. 2013. Control of vegetation distribution: Climate, geological substrate, and geomorphic factors. A case study of grassland in Ordos, Inner Mongolia, China. Canadian Journal of Remote Sensing39, 167–174.

Fitton E M, Brooks C F. 1931. Soil temperatures in the United States. Monthly Weather Review1, 6–16.

Gong Z, Zhang G, Chen Z. 2007. Soil Genesis and Taxonomy. Science Press, China. (in Chinese)

Grant R F, Izaurralde R C, Chanasyk D S. 1995. Soil temperature under different surface managements: testing a simulation model. Agricultural and Forest Meteorology73, 89–113.

Han C, Yu W, Liu J, Fu X, Zhao L. 2017. Study on estimation method of annual average ground temperature in China. Acta Pedologica Sinica54, 354–366. (in Chinese)

Hengl T, Heuvelink G B M, Rossiter D G. 2007. About regression-kriging: From equations to case studies. Computers & GeosciencesSpatial Analysis33, 1301–1315.

Horton R, Wierenga P J. 1983. Estimating the soil heat flux from observations of soil temperature near the surface. Soil Science Society of America Journal47, 14–20.

Husnjak S, Mesari M, Mesi M. 2014. Determination of soil temperature regimes in Croatia. Agriculturae Conspectus Scientificus79, 139–143.

Jiang Z D, Wang Q B, Libohova, Adhikari K, Brye K R, Sun Z X, Sun F J, Jiang Y Y, Owens P R. 2021. Fe–Mn concentrations in upland loess soils in mid-continental north America: A step towards dynamic soil survey. Catena202, 105273.

Jenny H. 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw Hill, New York.

Juin E U. 1991. Soil temperature regime under three forest site conditions of east Texas. MSc thesis, Austin State University, USA.

Jungqvist G, Oni S K, Teutschbein C, Futter M N. 2014. Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE9, e93957.

Lin L I. 1989. A Concordance correlation coefficient to evaluate reproducibility. Biometrics45, 255–268.

Liu F, Wu H, Zhao Y, Li D, Yang J L, Song X, Shi Z, Zhu A X, Zhang G L. 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin67, 328–340.

Liu F, Zhang G, Song X, Li D, Zhao Y, Yang J, Wu H, Yang F. 2020. High-resolution and three-dimensional mapping of soil texture of China. Geoderma361, 114061.

Lu X, Dong Y, Tu C. 2016. Soil temperature regimes in Guizhou Province based on different estimation methods. Acta Pedologica Sinica53, 401–410. (in Chinese)

Lu Y, Liu F, Zhao Y G, Song X D, Zhang G L. 2019. An integrated method of selecting environmental covariates for predictive soil depth mapping. Journal of Integrative Agriculture18, 57–71.

McBratney A B, Santos M L M, Minasny B. 2003. On digital soil mapping. Geoderma117, 3–52.

Nie L, Peng S. 2017. Rice production in China. In: Chauhan B, Jabran K, Mahajan G, eds., Rice Production Worldwide. Springer, Cham.

Qian B, Gregorich E G, Gameda S, Hopkins D W, Wang X L. 2011. Observed soil temperature trends associated with climate change in Canada. Journal of Geophysical Research116, 1–16.

Qin D, Tao S, Dong S, Luo Y. 2015. ClimateEnvironmentaland Socioeconomic Characteristics of China. Springer, Berlin, Heidelberg. pp. 1–27.

Qiu G Q, Cheng G D. 1995. Permafrost in China - past and present. Permafrost and Periglacial Processes6, 3–14.

Ran Y, Li X. 2018. Frozen Soil Map of China (2000). National Tibetan Plateau Data Center, China. (in Chinese)

Rodríguez M, Neris J, Tejedor M, Jiménez C. 2010. Soil temperature regimes from different latitudes on a subtropical island (Tenerife, Spain). Soil Science Society of America Journal74, 1662.

Shishov L L, Tonkonogov V D, Lebedeva I I, Gerasimova M I. 2001. Principles, structure and prospects of new Russian soil classification system. In: European Soil Bureau Research Report No. 7. European Soil Bureau, Ispra. pp. 27–34.

Smith G D. 1986. The Guy Smith Interviews: Rationale for Concepts in Soil Taxonomy (Technical Monograph 11). Soil Management Support Services. New York, USA.

Smith G D, Newhall F, Robinson L H, Swanson D. 1964. Soil Temperature Regimes: Their Characteristics and Predictability. United States Department of Agriculture–Soil Conservation Service. Lincoln, Nebraska.

Song X, Wu H, Ju B, Liu F, Zhang G L. 2020. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma363, 114145.

SSS (Soil Survey Staff). 2022. Keys to Soil Taxonomy. 13th ed. United States Department of Agriculture–Natural Resources Conservation Service, Lincoln, Nebraska.

Spaargaren O C, Deckers J. 1998. The world reference base for soil resources. In: Schulte A, Ruhiyat D, eds., Soils of Tropical Forest Ecosystems. Springer, Berlin, Heidelberg.

Takata Y, Kuwagata T, Kohyama K, Obara H. 2011. Delineation of Japanese soil temperature regime map. Soil Science and Plant Nutrition57, 294–302.

Trnka M, Kersebaum K C, Eitzinger J, Hayes M, Hlavinka P, Svoboda M, Dubrovský M, Semerádová D, Wardlow B, Pokorný E, Možný M. 2013. Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Climatic Change120, 405–418.

Xu Q, Dong Y X, Wang Y Y, Yang R, Xu C D. 2018. Determinants and identification of the northern boundary of China’s tropical zone. Journal of Geographical Sciences28, 31–45. (in Chinese)

Yang X M. 1989. Soil water and heat status and soil systematic classification. Soil21, 110–113. (in Chinese)

Zhang H, Shi X, Yu D, Wang H, Zhao Y, Sun W, Huang B. 2008. Comparison of spatial interpolation methods of soil temperature in China. Geographical Research27, 1299–1307. (in Chinese)

Zhang H, Shi X, Yu D, Wang H, Zhao Y, Sun W, Huang B. 2009. Spatial prediction of soil temperature in China. Acta Pedologica Sinica46, 1–8. (in Chinese)

Zhang T, Huang J, Lei Q, Liang X, Stuart L,Luo J, Zhu A, Bao W, Liu H. 2022. Empirical estimation of soil temperature and its controlling factors in Australia: Implication for interaction between geographic setting and air temperature. Catena208, 105696.

Zhao D, Wu S. 2014. Responses of vegetation distribution to climate change in China. Theoretical and Applied Climatology117, 15–28.

[1] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
No Suggested Reading articles found!