Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (3): 945-957    DOI: 10.1016/j.jia.2023.02.015
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis
REN Chuan-ying1, 2, ZHANG Shan1, HONG Bin1, GUAN Li-jun1, 2, HUANG Wen-gong3, FENG Jun-ran1, SHA Di-xin1, YUAN Di1, LI Bo1, JI Ni-na4, LIU Wei5#, LU Shu-wen1, 2#

1 Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P.R.China
2 Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, P.R.China
3 Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P.R.China
4 Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P.R.China
5 The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

高脂血症是一种与饮食相关的常见代谢紊乱疾病。人们认为含有层和胚芽的糙米有助于缓解高脂血症。本研究通过高脂饮食建立了高脂血症大鼠模型,通过该模型在血脂、脂肪酶、载脂蛋白和炎症方面探索了发芽糙米(Gbrown)和发芽黑米(一种发芽的黑色糙米,Gblack)的降血脂潜力。进而通过16S rDNA测序测定了接受不同饮食干预高脂血症大鼠的肠道微生物。本研究结果发现,GbrownGblack均可减轻大鼠的高脂血症,表现出降低TCTGLDL-C和载脂蛋白B,以及升高HDL-CHLLPLLCAT和载脂蛋白质A1的效果Gbrown/Gblack还可以减轻高脂血症大鼠的炎症,表现出TNF-αIL-6ET-1的降低。同时,16S rDNA测序发现Gbrown/Gblack饮食提高了高脂血症大鼠肠道微生物的丰度和多样性。在门级水平,Gbrown/Gblack在高脂血症大鼠中降低了厚壁菌门(Firmicutes),增加了拟杆菌门(Bacteroidetes),并降低了F/B比率。在属级水平,Gbrown/Gblack在高脂血症大鼠中降低了链球菌属(Streptococcus),并增加了瘤胃球菌属(Ruminococcus)和异杆菌属(Allobaculum)。同时,本研究还确定一些与脂质代谢相关的差异微生物属,如Gblack组中的LachnospiraceaeRuminococcusGbrown组中的PhascolarctobacteriumDoreaTuricibacterEscherichia Shigella。值得注意的是,Gblack对高脂血症的有益效果强于Gbrown。总之,Gbrown/Gblack的饮食干预可以通过减轻肠道微生物的失调有助于缓解高脂血症。


Hyperlipidemia is a frequent metabolic disorder that is closely associated with diet.  It is believed that brown rice, containing the outer bran layer and germ, is beneficial for the remission of hyperlipidemia.  This study established a rat model of hyperlipidemia by feeding a high-fat diet.  The hypolipidemic potential of germinated brown rice (Gbrown) and germinated black rice (a germinated black-pigmented brown rice, Gblack) were explored in the model rats, mainly in the aspects of blood lipids, lipases, apolipoproteins, and inflammation.  The gut microbiota in hyperlipidemic rats receiving diverse dietary interventions was determined by 16S rDNA sequencing.  The results showed that the intervention of Gbrown/Gblack alleviated the hyperlipidemia in rats, evidenced by decreased TC, TG, LDL-C, and apolipoprotein B, and increased HDL-C, HL, LPL, LCAT, and apolipoprotein A1.  Gbrown/Gblack also weakened the inflammation in hyperlipidemia rats, evidenced by decreased TNF-α, IL-6, and ET-1.  In addition, 16S rDNA sequencing revealed that the diet of Gbrown/Gblack elevated the abundance and diversity of gut microbiota in hyperlipidemia rats.  At the phylum level, Gbrown/Gblack decreased Firmicutes, increased Bacteroidetes, and decreased the F/B ratio in hyperlipidemia rats.  At the genus level, Gbrown/Gblack decreased Streptococcus and increased Ruminococcus and Allobaculum in hyperlipidemia rats.  Some differential microbial genera relating to lipid metabolism were also determined, such as the Lachnospira and Ruminococcus in the Gblack group, and the Phascolarctobacterium, Dorea, Turicibacter, and Escherichia-Shigella in the Gbrown group.  Notably, the beneficial effect of Gblack was stronger than Gbrown.  To sum up, the dietary interventions of Gbrown/Gblack contributed to the remission of hyperlipidemia by alleviating the dysbiosis of gut microbiota.

Keywords:  hyperlipidemia       germination        brown rice        black rice        gut microbiota  
Received: 02 November 2022   Accepted: 29 December 2022

This study was funded by the National Key Research and Development Program of China (2021YFD2100902), the Outstanding Youth Project of Provincial Agricultural Science and Technology Innovation and Leaping Project, China (2022JCQN005), the Research Funding for Scientific Research Institutes in Heilongjiang Province, China (CZKYF2022-1-B021), and the National Rice Industry Technology System, China.

About author:  #Correspondence LU Shu-wen, Tel/Fax: +86-451-86610253, E-mail:; LIU Wei, Tel/Fax: +86-451-86695508, E-mail:

Cite this article: 

REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. 2023. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis. Journal of Integrative Agriculture, 22(3): 945-957.

Ballway J W, Song B J. 2021. Translational approaches with antioxidant phytochemicals against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease. Antioxidants (Basel), 10, 384. 
Bhaskaragoud G, Rajath S, Mahendra V P, Kumar G S, Gopala Krishna A G. 2016. Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochemical and Biophysical Research Communications, 476, 82–89.
Cho D H, Lim S T. 2016. Germinated brown rice and its bio-functional compounds. Food Chemistry, 196, 259–271.
Deng N, He Z, Guo R, Zheng B, Li T, Liu R H. 2020. Highland barley whole grain (Hordeum vulgare L.) ameliorates hyperlipidemia by modulating cecal microbiota, miRNAs, and AMPK pathways in leptin receptor-deficient db/db mice. Journal of Agricultural and Food Chemistry, 68, 11735–11746.
Derosa G, Maffioli P, D’Angelo A, Russo R. 2019. Effects of a nutraceutical combination of monacolin, γ-oryzanol and γ-aminobutyric acid on lipid profile and C-reactive protein in mice. Archives of Medical Science, 15, 792–796.
Ding L, Ren S, Song Y, Zang C, Liu Y, Guo H, Yang W, Guan H, Liu J. 2022. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Frontiers in Nutrition, 9, 935612.
Dong Y, Li X, Liu Y, Gao J, Tao J. 2021. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sciences, 278, 119579.
El-Tantawy W H, Temraz A. 2019. Natural products for controlling hyperlipidemia: Review. Archives of Physiology and Biochemistry, 125, 128–135.
Esa N M, Kadir K K A, Amom Z, Azlan A. 2013. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chemistry, 141, 1306–1312.
Gomaa E Z. 2020. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek, 113, 2019–2040.
Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M, Feng X, Xia X. 2007. Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods for Human Nutrition, 62, 1–6.
Haenni M, Lupo A, Madec J Y. 2018. Antimicrobial resistance in Streptococcus spp. Microbiology Spectrum, 6, 1–25. 
He N, Ye H. 2020. Exercise and hyperlipidemia. Advances in Experimental Medicine and Biology, 1228, 79–90.
He W S, Li L, Rui J, Li J, Sun Y, Cui D, Xu B. 2020. Tomato seed oil attenuates hyperlipidemia and modulates gut microbiota in C57BL/6J mice. Food & Function, 11, 4275–4290.
Ho J N, Son M E, Lim W C, Lim S T, Cho H Y. 2012. Anti-obesity effects of germinated brown rice extract through down-regulation of lipogenic genes in high fat diet-induced obese mice. Bioscience Biotechnology and Biochemistry, 76, 1068–1074.
Huang X, Chen W, Yan C, Yang R, Chen Q, Xu H, Huang Y. 2019. Gypenosides improve the intestinal microbiota of non-alcoholic fatty liver in mice and alleviate its progression. Biomedicine & Pharmacotherapy, 118, 109258.
Hung P V, Maeda T, Morita N. 2007. Dough and bread qualities of flours with whole waxy wheat flour substitution. Food Research International, 40, 273–279.
Ito V C, Lacerda L G. 2019. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 301, 125304.
Jandhyala S M, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology, 21, 8787–8803.
Ji J, Zhang S, Yuan M, Zhang M, Tang L, Wang P, Liu Y, Xu C, Luo P, Gao X. 2022. Fermented Rosa roxburghii Tratt juice alleviates high-fat diet-induced hyperlipidemia in rats by modulating gut microbiota and metabolites. Frontiers in Pharmacology, 13, 883629.
Jia L, Ju X, Ma Y, Chen S, Lv X, Song N, Sui G, Cao Y, Yu N, Wu Y, Zhao N, Zhan K, Yang G. 2021. Comprehensive multiomics analysis of the effect of ginsenoside Rb1 on hyperlipidemia. Aging (Albany NY), 13, 9732–9747.
Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. 2021. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 11, 634780.
Kang H W, Lim W C, Lee J K, Ho J N, Lim E J, Cho H Y. 2017. Germinated waxy black rice ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. Biological & Pharmaceutical Bulletin, 40, 1846–1855.
Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, Tian H, Xue Y, Ren P, Kuang X, Cai Y, Tong M, Li L, Fan W. 2022. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacological Research, 175, 106020.
Kelly R B. 2010. Diet and exercise in the management of hyperlipidemia. American Family Physician, 81, 1097–1102.
Kong Y, Li Y, Dai Z R, Qin M, Fan H L, Hao J G, Zhang C X, Zhong Q P, Qi C, Wang P. 2021. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Science & Nutrition, 9, 5198–5210.
Li J, Zhang Y, Yang S, Lu Z, Li G, Wu S, Wu D R, Liu J, Zhou B, Wang H D, Huang S Y. 2021. The beneficial effects of edible kynurenic acid from marine horseshoe crab (Tachypleus tridentatus) on obesity, hyperlipidemia, and gut microbiota in high-fat diet-fed mice. Oxidative Medicine and Cellular Longevity, 8874503.
Li L, Guo W L, Zhang W, Xu J X, Qian M, Bai W D, Zhang Y Y, Rao P F, Ni L, Lv X C. 2019. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food & Function, 10, 2560–2572.
Li T, Teng H, An F, Huang Q, Chen L, Song H. 2019. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food & Function, 10, 2642–2650.
Li Y, Lu X, Li X, Guo X, Sheng Y, Xu G, Han X, An L, Du P. 2020. Effects of Agaricus blazei Murrill polysaccharides on hyperlipidemic rats by regulation of intestinal microflora. Food Science & Nutrition, 8, 2758–2772.
Lim W C, Ho J N, Lee H S, Cho H Y. 2016. Germinated waxy black rice extract inhibits lipid accumulation with regulation of multiple gene expression in 3T3-L1 adipocytes. Food Science and Biotechnology, 25, 821–827.
Liu Q, Zhao J, Liu S, Fan Y, Mei J, Liu X, Wei T. 2021. Positive intervention of insoluble dietary fiber from defatted rice bran on hyperlipidemia in high fat diet fed rats. Journal of Food Science, 86, 3964–3974.
Lv X C, Chen M, Huang Z R, Guo W L, Ai L Z, Bai W D, Yu X D, Liu Y L, Rao P F, Ni L. 2021. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Research International, 139, 109956.
Matsuo A, Sato K, Park E Y, Nakamura Y, Ohtsuki K. 2012. Control of amylase and protease activities in a phytase preparation by ampholyte-free preparative isoelectric focusing for unrefined cereal-containing bread. Journal of Functional Foods, 4, 513–519.
Nie Y, Luo F. 2021. Dietary fiber: An opportunity for a global control of hyperlipidemia. Oxidative Medicine and Cellular Longevity, 5542342.
Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, Giustina A, Gazzaruso C. 2018. Microbiota and metabolic diseases. Endocrine, 61, 357–371.
Patil S B, Khan M K. 2011. Germinated brown rice as a value added rice product: A review. Journal of Food Science & Technology, 48, 661–667.
Qu W T, Yuan X J, Zhao J S, Zhang Y X, Hu J, Wang J W, Li J X. 2017. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Molecular Nutrition & Food Research, 61, 14.
Ravichanthiran K, Zheng M, Zhang H, Yang C, Wang C, Muhammad S, Aglago E, Zhang Y, Jin Y, Pan B. 2018. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants, 7, 71.
Ren Y, Wu S, Xia Y, Huang J, Ye J, Xuan Z, Li P, Du B. 2021. Probiotic-fermented black tartary buckwheat alleviates hyperlipidemia and gut microbiota dysbiosis in rats fed with a high-fat diet. Food & Function, 12, 6045–6057.
Roohinejad S, Omidizadeh A, Mirhosseini H, Saari N, Mustafa S, Yusof R M, Hussin A S, Hamid A, Abd Manap M Y. 2010. Effect of pre-germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90, 245–251.
Round J L, Mazmanian S K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9, 313–323.
Schoeler M, Caesar R. 2019. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine & Metabolic Disorders, 20, 461–472.
Shen K P, Hao C L, Yen H W, Chen C Y, Chen J H, Chen F C, Lin H L. 2016. Pre-germinated brown rice prevented high fat diet induced hyperlipidemia through ameliorating lipid synthesis and metabolism in C57BL/6J mice. Journal of Clinical Biochemistry and Nutrition, 59, 39–44.
Slavin J. 2004. Whole grains and human health. Nutrition Research Reviews, 17, 99–110.
Song H, Shen X, Zhou Y, Zheng X. 2021. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food & Function, 12, 10160–10170.
Song J J, Tian W J, Kwok L Y, Wang Y L, Shang Y N, Menghe B, Wang J G. 2017. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. British Journal of Nutrition, 118, 481–492.
Song S, Tian D, Zhang Z, Hu S, Yu J. 2018. Rice genomics: over the past two decades and into the future. Genomics Proteomics Bioinformatics, 16, 397–404.
Stojanov S, Berlec A, Strukelj B. 2020. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 8, 1715.
Tomio I, Masahiko T, Eiko A, Toshiroh H. 2002. Distribution of amylose, nitrogen, and minerals in rice kernels with various characters. Journal of Agricultural & Food Chemistry, 50, 5326.
Wei W, Jiang W, Tian Z, Wu H, Ning H, Yan G, Zhang Z, Li Z, Dong F, Sun Y, Li Y, Han T, Wang M, Sun C. 2021. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clinical Nutrition, 40, 4234–4245.
Wu F, Na Y, Chen H, Jin Z, Xu X. 2011. Effect of germination on flavor volatiles of cooked brown rice. Cereal Chemistry, 88, 497–503.
Wu F, Yang N, Toure A, Jin Z, Xu X. 2013. Germinated brown rice and its role in human health. Critical Reviews in Food Science and Nutrition, 53, 451–463.
Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy K M, Liu F, Zhou X, Kamil A, Pan D, Liu H, Yang X, Yang C, Zhu B, Lv N, Xiong Q, Wang X, Sun J, Sun G, Yang Y. 2021. The prebiotic effects of oats on blood lipids, gut microbiota, and short-chain fatty acids in mildly hypercholesterolemic subjects compared with rice: A randomized, controlled trial. Frontiers in Immunology, 12, 787797.
Yan J, Xue Q, Chen W, Wang K, Peng D, Jiang J, Li P, Du B. 2022. Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota. Food Research International, 155, 111125.
Yan S, Chen J, Zhu L, Guo T, Qin D, Hu Z, Han S, Zhou Y, Akan O D, Wang J, Luo F, Lin Q. 2022. Oryzanol attenuates high fat and cholesterol diet-induced hyperlipidemia by regulating the gut microbiome and amino acid metabolism. Journal of Agricultural and Food Chemistry, 70, 6429–6443.
Yang H, Pan R, Wang J, Zheng L, Li Z, Guo Q, Wang C. 2020. Modulation of the gut microbiota and liver transcriptome by red yeast rice and monascus pigment fermented by purple Monascus SHM1105 in rats fed with a high-fat diet. Frontiers in Pharmacology, 11, 599760.
Yang S C, Huang W C, Ng X E, Lee M C, Hsu Y J, Huang C C, Wu H H, Yeh C L, Shirakawa H, Budijanto S, Tung T H, Tung Y T. 2019. Rice bran reduces weight gain and modulates lipid metabolism in rats with high-energy-diet-induced obesity. Nutrients, 11, 2033.
Yao S L, Xu Y, Zhang Y Y, Lu Y H. 2013. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food & Function, 4, 1602–1608.
Yao Y S, Li T D, Zeng Z H. 2020. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids in Health and Disease, 19, 23.
Ze X, Duncan S H, Louis P, Flint H J. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME Journal, 6, 1535–1543.
Zhang H Y, Tian J X, Lian F M, Li M, Liu W K, Zhen Z, Liao J Q, Tong X L. 2021. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed Pharmacother, 133, 110857.
Zhao G, Zhang R, Huang F, Dong L, Liu L, Jia X, Chi J, Ma Y, Deng M, Chen Y, Ma Q, Zhang M. 2022. Hydrolyzed bound phenolics from rice bran alleviate hyperlipidemia and improve gut microbiota dysbiosis in high-fat-diet fed mice. Nutrients, 14, 1277.
No related articles found!
No Suggested Reading articles found!